
Techniques for off-line scene exploration using a
virtual camera

Benoît JAUBERT, Karim TAMINE, Dimitri PLEMENOS
University of Limoges, XLIM laboratory, UMR – CNRS 6172

Limoges – France
jaubert@msi.unilim.fr, tamine@msi.unilim.fr, plemenos@unilim.fr

Abstract
A new method for automatic exploration of a three-dimensional scene based on a

virtual camera is presented. The proposed method is related to off-line

exploration and is made of two steps. In the first step, a “global” view of the

scene is computed by determining a minimal set of “good” points of view. The
second step uses this set of points of view to compute a camera path around the

scene.

Keywords: scene understanding, automatic virtual camera, good point of view,

visibility.

1 Introduction

Virtual worlds exploration techniques

become nowadays more and more
important. When, more than 10 years ago,
we have proposed the very first methods

permitting to improve the knowledge of a
virtual world [Ple91, PB96], many people
thought that it was not an important

problem. People begun to understand the
importance of this problem and the
necessity to have fast and accurate

techniques for a good exploration and
understanding of various virtual worlds,
only during these last years. However,

there are very few papers which face this
problem from the computer graphics point
of view, whereas several papers have been

published on the robotics artificial vision
problem.

The purpose of a virtual world exploration
in computer graphics is completely
different from the purpose of techniques

used in robotics. In computer graphics, the
purpose of the program which guides a
virtual camera is to allow a human being,

the user, to understand a new world by
using an automatically computed path,
depending on the nature of the world. The

main interaction is between the camera and
the user, a virtual and a human agent and
not between two virtual agents or a virtual

agent and his environment.

In this paper we are mainly concerned by

global virtual world exploration, where the
camera remains outside the scene. Several
papers have been published on on-line

global virtual world exploration. This time,
our purpose is off-line exploration.
Moreover, the purpose of this paper is

visual exploration of fixed unchanging
virtual worlds.

The paper is organised in the following
manner: In section 2 a study of existing
techniques on virtual worlds exploration is

presented. Section 3 is the main section of
the paper, where new off-line exploration
techniques are presented, including

viewpoint selection, ordering and camera
trajectory computing. Some results
obtained with the proposed techniques are

presented in section 4 before concluding in
section 5.

2 Background

The first works on visual scene

understanding were published at the end of
the years 1980. Thus, Kamada et al.
[KK88] proposed a fast method to compute

a point of view minimizing the
degenerated edges of a scene.

Colin [Col88] has proposed a method
initially developed for scenes modelled by
octrees. The purpose of the method was to

compute a good point of view for an
octree. The method uses the principle of
“direct approximate computation” to

compute a good direction of view. This
principle can be described as follows:
1. Choose the three best directions of

view among the 6 directions
corresponding to the 3 coordinates axes
passing through the centre of the scene.

2. Compute a good direction in the
pyramid defined by the 3 chosen
directions, taking into account the

importance of each one of these
directions.

A direction of view is estimated better than
another one if this direction of view allows
to see more details than the other.

Plemenos [Ple91, PB96] proposed an
iterative method of automatic viewpoint

calculation. The scene is placed at the
centre of a sphere whose surface represents
all the possible points of view. The sphere

of points of view is divided in 8 spherical
triangles and the best one is chosen,
according to the quality as points of view

of the three vertices of the triangle. Then,
the selected spherical triangle is
recursively subdivided and the best vertex

is chosen as the best point of view at the
end of the process.

During the five last years several papers
have been published about visibility
problems [Dur00, Dur02, Rigau00,

Feixas02, Sbert02, PSF04] and selection of
good points of view [BDP99, Feixas99,
PPV01, PPV02, PPV03a, PPV03b].

A well chosen point of view allows to well
understand a simple scene. However, for

complex scenes, a single point of view is
generally not enough to understand them.
Even if the user can see the scene from

several good points of view, it is, generally
not enough for understand complex scenes
because the change from one point of view

to another one may be confusing for the
user. In order to well understand complex
scenes, the best solution is intelligent

automatic exploration by a virtual camera.
This exploration must avoid brusque
changes in camera movement in order to

get a smooth exploration of the scene.

When a user discovers a scene on the net,
it is possible that the chosen angle of view
doesn’t allow to well understand the scene.

In such a case, the user has two
possibilities, according to his (her)
disponibility. The first one is to ask

immediately a visual exploration of the
unknown scene, that is an online
exploration. The second possibility is to

keep the scene with the intention to
discover it later. This possibility implies
off-line exploration of the scene.

So, according to the user’s decision, two
scene exploration modes may be envisaged

[Ple03]:
• Real time online exploration, where the

scene is visited for the first time and

the path of the camera is determined in
incremental manner. For this kind of
exploration it is important to have fast

exploring techniques in order to allow
the user to understand in real time the
explored world.

• Off-line exploration when the scene
exploration program visits the scene
before the user. The virtual world is

found and analysed by the program
guiding the camera’s movement in
order to determine interesting points to

visit and path(s) linking these points.
The user will be able to visit the scene
later, following an already determined

path. For this exploration mode it is
less important to use fast techniques to
determine the camera’s path.

A few papers about online scene
exploration have been published since

1999 [PDP99, PDP00a, PDP00b, PPV03c].
Some off-line exploration techniques have

been proposed in a preliminary work
[Jau04].

3 New techniques for off-line
exploration of three-dimensional
scene

This section presents new techniques and
methods proposed for automatic off-line

exploration of virtual worlds. The
exploration process is generally performed
in two steps. The goal of the first step is to

find a set of points of view allowing to see
all the details of the scene. In the second
step, the selected points are used in order

to compute an optimal trajectory. As it has
been explained above, exploration is a
global one and the selected points of view

are computed on the surface of a sphere
surrounding the virtual world.

3.1 Computing an initial set of points of
view.

Computing an initial set of points of
view is the main part of our off-line
exploration techniques. The final set

should be minimal and should present as
many information of the scene as possible.
As an object may be seen from one or

more viewpoints, we will have to avoid
redundancies in order to keep only useful
viewpoints.

The first thing to do is to build a

beginning balanced set of viewpoints
placed on a sphere which surrounds the
scene.

The centre of the surrounding sphere is
the centre of the scene and its ray is

calculated with the following empiric
formula:

= 1 . 5 *
(Xmax-Xmin)2 +(Ymax -Ymin)2 + (Zmax-Zmin)2

3

Viewpoints distribution depends on the
increment of two loops:

For from 0 to 2 do
 For from 0 to do
 Point (, ,) is an initial viewpoint
 End
End

Smaller increments for ϕ and θ give a

better quality of the beginning set. In
figure 1, one can see some examples with

different increments.

Figure 1 : Starting set of viewpoints

Three criteria have been defined in order
to select the most interesting points of
view. The first one, as commonly used in

exploration methods, is related to the
number of visible polygons. The second
criterion depends on the number of visible

objects. The third criterion depends on the
above ones and on the angle of each face
with the view direction.

Visible polygons

This kind of evaluation considers the
number of visible polygons of each point
of view. Intuitively, we assume that a point

of view is more interesting if it allows to
see more polygons. Unfortunately, if this is
true in many cases, for some scenes this

criterion is not sufficient because the

number of independent parts in the scene is
at least as important as the number of
polygons. However, the visible polygons

criterion will be used, combined with other
criteria.

Visible objects

In order to resolve the problem due to

some limits of a face-based exploration the
concept of object is considered with no
consideration of the number of its faces.

Indeed, the most interesting point of view
allows perceiving the maximum of objects
of the scene. This is the natural human

perception: in order to describe a room, we
first describe the objects it contains. The
perception of these objects needs only a

partial vision of them. Therefore, it is
obvious to consider this criterion as the
main one.

Combining evaluation criteria

We add to these criteria a third one
which takes into account not only the
number of visible polygons but also the

quality of view (that is the angle of vision)
of a polygon from the point of view. This
criterion is resumed in the following

formula.

In this formula, p is a real number and
represents the number of polygons in the

scene divided by the number of objects, o
is the number of objects in the scene, pv is
a value between 0 and 1 and shows the

visible part of the polygon (0.5 means that
the face is 50% visible) and is the angle

between the polygon orientation and the
vision direction (Figure 2).

α

Viewpoint

ray
polygon orientation

Figure 2: Angle of vision

This criterion offers a additional
evaluation mode for a viewpoint using all

previous criteria together with quality of
view.

3.1.1 Point of view evaluation

The point of view evaluation depends on

the values returned by the three criteria
which are sorted in the following order,
from the more important to the less

important: number of visible objects,
number of visible faces and combination of

the above criteria. For example, let’s

consider these three criteria. If two
different points of view perceive eight
objects of the scene, the best one would be

the point which has the greatest number of
faces. If the number of visible faces for the
different objects is the same, the best point

of view will be determined by the third
criterion. If the values of the three criteria
are equal for the two points, one of them

will be randomly chosen as the best
viewpoint.

3.1.2 Point of view selection

Evaluation function

The goal of an evaluation function is to

estimate the view quality from a point, in

mark = (p × o) + (pv
polygons
∑ × cos())

order to choose the most interesting
viewpoints. This is very important during
the exploration procedure. This function

returns a point value using various criteria.
Viewpoint evaluation uses two main tools.

The first tool uses an intersection

determining function. This tool says
whether the intersection of the polygon
with a ray defined by the point of view and

a point on a polygon is visible (Figure 3).

α

Viewpoint

ray

Non visible polygon

Viewpoint

ray

Vsible polygon

Figure 3: Intersection function

The intersection algorithm is the
following:

Function Intersection (viewpoint, polygon) : boolean

 result true

 ray make ray (view point, random polygon point)

 for each other polygon do

 if ray is stopped before the point then
 result false

 end

 end
 return result

Viewpoint

Partially visible polygon

Figure 4: partially visible polygon

The second tool determines the visible

part of a polygon from a point of view. To
do this, a more or less important number of
rays is sent from the point of view to

randomly generated points of the polygon
(Figure 4). This visible part is given by the
following formula.

raysofnumber

raysstoppednonofnumber
visibility =

The corresponding algorithm is the
following:

Function visibility (view point, polygon) : real (between 0

and 1)
 Visibility 0

 for ray from 1 to Number_of_Rays

 visible Intersection (view point, polygon)

 If visible is true then

 visibility visibility+ (1/ Number_of_Rays)

 end
 end

Return visibility

The above tools are used by the global
viewpoint evaluation function. This
function works in the following manner:

• If a polygon of an object is visible, the
object is considered visible.

• At the end of the evaluation process,

the function returns three values (seen
objects, seen polygons and an
evaluation mark of the viewpoint.

The evaluation function algorithm may be
schematically presented in the following

algorirhm which defines the function
evaluate.

In this function, a globally visible polygon
or object is permanently marked to indicate
that it is visible from another viewpoint.

function evaluate (scene, viewpoint) : three real

 for each object in the scene do

 for each polygon of the object do
 visible visibility (viewpoint, polygon)

 if visible > 0 then

 If the object is not globally visible
 object locally visible

 end

 If the polygon is not globally visible
 polygon locally visible

 Add 1 to Seen polygons number
 mark mark + cos (ray, polygon)

 end

 end

 end
 if the object is locally visible

 Add 1 to Seen objects number

 end

 end
 return (Seen objects number, Seen polygons number,

mark)

In this function, a globally visible

polygon or object is permanently marked
to indicate that it is visible from another
viewpoint.

3.1.3 How to mark a polygon or an
object as globally visible?

We need a function for marking a
polygon or an object permanently to

remember which one has already been seen
from a selected viewpoint. After the
evaluation function finds the best

viewpoint, we need to save the set of
polygons and objects seen from this
viewpoint in order to take them into

account. The next iteration of the
evaluation function will know which part
of the scene was already seen and will

choose another viewpoint which fill up the
set.

This function works like the evaluation
function and marks the globally visible
objects and polygons instead of evaluating

the viewpoint. The number of rays is much
more important than in the evaluation
function to assure better results.

procedure marking (scene, viewpoint)

 for each object in the scene do

 for each polygon of this object do
 for num from 1 to (number of rays* precision)

 visible Intersection (viewpoint, polygon)

 if visible is true then
 object globally visible

 polygon globally visible

 end

 end

 end

 end

3.1.4 First viewpoint selection method

This method uses the initial set of
viewpoints and applies the evaluation
function on each of them.

The best viewpoint (according to chosen
criteria) of the set is selected and added to

the final set of viewpoints.

The mark function marks the objects and

polygons seen from selected viewpoints.

The evaluation function is applied on

each point of the initial set (except the
viewpoints already selected in the final set)
and the best viewpoint is selected and

added to the final set. The viewpoint
evaluation function does not take into
account already seen objects and polygons.

The whole process is repeated until the
terminal condition is satisfied.

The following algorithmic scheme
describes this viewpoint selection method.

function first method (scene, initial set of viewpoints):

 final set of viewpoints

do
 Chosen point none

 best note (- - -

 for each viewpoint in the initial set do

 If viewpoint is not in the final set

 note evaluate (scene, viewpoint)

 if note > best note then

 Chosen point viewpoint

 best note note

 end

 end

 end
 If Chosen point none

 mark(scene, chose point)

 add(final set, Chosen point)

 end
until terminal condition or chosen point = none

return (final set)

It is easy to see that in this method:

• All the objects and polygons which can
be seen are detected and at least one
point of view in the final set can see

them.
• The final set of viewpoints is minimal.
• The time cost to compute the final set

of viewpoints is maximal. The initial
set of viewpoints has to be processed
n+1 times if n is the number of

viewpoints of the final set.

3.1.5 Second viewpoint selection
method

In this method all the viewpoints of the

initial viewpoint set are evaluated and
sorted, according to their values, in
decreasing order. The viewpoints of the

obtained classified viewpoint set may now
be processed by order of importance. The
best viewpoints will be processed before

the others.

function Second Method (scene, initial set of viewpoints)

 return final set of viewpoints

sorted array empty

Number of points of view 0

For each point in the initial set
 evaluation evaluate(scene, viewpoint)

 add in sorted array (viewpoint, evaluation)

end
marking (scene, sorted array[0]) (the best viewpoint)

Select useful viewpoints (scene, sorted array)

return (sorted array)

The Select useful viewpoints procedure

tries to suppress redundant viewpoints.
• The evaluation function is used on the

current point (except the first one which

is already marked).
• If this point allows to see new polygons

or objects, we mark them and go to the

next point.
• Otherwise the viewpoint is erased from

the sorted array.

procedure Select useful viewpoints (scene, array)

 for sign from 1 to number of viewpoint-1 do
 evaluation evaluate (scene, array[sign])

 if evaluation blank evaluation

 mark (sorted array[sign])

 else
 erase from sorted array (sign)

 Retract 1 from number of viewpoints

 end

 end
return (array)

This method has some advantages and
some drawbacks, compared to the first
method.

• All the objects and polygons which can
be seen are detected and at least one
point of view in the final set can see

them.
• The final set is not minimal and the

number of viewpoints in the final set can

be much higher than with the first
method.

• The method is less time consuming than
the first one. The initial set of viewpoints
is processed two times.

3.1.6 Improvements

It is possible to improve the proposed
methods of computing reduced viewpoint
sets, in order to reduce computation time

or to improve the quality of selected
viewpoints.

Bounding boxes of objects may be used
to accelerate the whole process. Thus, if
the bounding box of an object is not

intersected by the current ray, it is not
necessary to test intersection of the ray
with the corresponding object or with

polygons of this object.

Current viewpoint

Current polygon

Bounding box object 1

Bounding box object 2

Figure 5: Using bounding boxes to reduce

computation cost

In Figure 5 the polygons of object 2
cannot hide the current polygon because te
current ray does not intersect its bounding

box.

Bounding boxes may also be used

instead of objects, in order to accelerate the
computation in a first step of the
processing where only visible objects will

be processed. A second step is then

necessary for the non visible objects, in
order to verify more precisely some cases
difficult to resolve. The use of bounding

boxes allows to divide the computation
time by a quantity equal to

6

objectbyfacesofaverage but the main

drawback of this improvement is that
embedded objects will never be marked as
visible during the first step of the process.

The quality of selected points of view
may be improved in the following manner:

For each point of view of the final set,
some points in its neighborhood are tested
and, if they allow to see new objects or

polygons, they are included in the set. This
improvement allows to find new
potentially interesting viewpoints but the

computation time and the number of
selected viewpoints increases.

3.2 Computing an optimized trajectory

After the reduced set of viewpoints is
computed, we have to compute an
optimized trajectory using the points of

this set. The proposed method works in
two steps. The first step performs an
ordering of the viewpoints of the set while

the second step computes the final
trajectory.

3.2.1 Ordering of viewpoints

As the camera will have to visit all the

viewpoints of the reduced set of
viewpoints, an order must be defined for
this visit. This order may depend on

various criteria.

3.2.1.1 Proximity-based ordering

Figure 6 : Proximity-based ordering

In this method (figure 6), proximity of

viewpoints is considered as the first
ordering criterion:

• The best viewpoint of the reduced
viewpoint set is chosen as starting point
for the camera trajectory.

• The next trajectory point is the closest to
the current point viewpoint. This point
becomes the current trajectory point.

• The previous step is repeated for each
remaining viewpoint of the reduced
viewpoint set.

This ordering is not always satisfactory,
especially if the camera uses a straight line

trajectory to go from a position to the next
one and several trajectory points are close
to each other.

3.2.1.2 Minimal path-based ordering

Figure 7 : Minimal path-based ordering

In this method (figure 7), the main

ordering criterion is the total length of the

whole trajectory, which has to be minimal.
This ordering criterion gives better results
than the proximity based one but the

ordering process is more time consuming.
Ordering is achieved by testing all the
solutions and retaining the best one.

Optimization is not necessary for the
moment because the number of points of
view is small and exploration is made off-

line.

3.2.2 Computing the camera trajectory

At the end of the ordering process,
applied to the reduced set of viewpoint, it

is possible to compute a camera trajectory.

Figure 8 : smooth trajectory for scene

exploration

The method has to avoid abrupt changes

of direction in the camera movement. To
do this, the following technique is used.

Let us suppose (figure 10) that the
current camera position on the surface of
the sphere is A and the viewpoint to reach

is B.

Figure 9 : another example of smooth
scene exploration

If the current direction of the camera
movement at point A is d, a new direction

AA1, between d and AB is chosen and the
next position A1 of the camera is defined
on the vector AA1. The same process is

repeated from each new step. In figure 10,
A, A1, A2, … are successive positions of
the camera.

A

B

A1
A2

d

Figure 10 : Computing a smooth camera
trajectory

In figure 8 and 9 one can see illustration
of smooth camera trajectories obtained

with the above technique.

4 Results

This section shows some results obtained
with the above techniques, applied to

various scenes. Performances of the two
viewpoint selection methods, presented in

section 3 are compared for the same set of
4 scenes.

Comparison of the proposed methods is
made with an initial set of 17 viewpoints.
The purpose of these methods is to

compute a reduced set of viewpoints. Of
course, the minimal set of viewpoints
needed to understand a scene is strongly

dependent on the nature of the scene. For
the scene of figure 10 a single point of
view allows to well understand it whereas

for the scene of figure 11 at least 4 points
of view are needed.

Figure 10: test scene for a single point of
view

Figure 11: scene with multiple points of
view needed

Four different scenes, A, B, C and D, are
used for comparisons and two criteria were

chosen to evaluate the two methods:
number of points of view of the reduced
set of viewpoints computed by each

method and time cost of each method.

Results of evaluation using the number

of points of view criterion are shown in
Table 1 where one can see that the two
methods give very often the same results

but the first method is generally better than
the second one because the computed set
of viewpoints is really minimal.

Table 2 shows results of evaluation of
the two methods using the time cost

criterion. All tests were done with an AMD
2800+ computer with 1Gbyte of RAM.

Sc A Sc B Sc C Sc D

Method I 4 3 4 3

Method II 4 3 4 6

Table 1: number of points of view by

method

Sc A Sc B Sc C Sc D

Method I 1m57s 3m49s 4m18s 5m49s

Method II 1m23s 3m07s 3m19s 3m30s

Gain 29% 18% 22% 39%

Table 2: computation time by method

The second method is always faster than
the first one. The obtained gain grows with

the complexity of the scene, even if the
notion of scene complexity is not formally
defined. This complexity is approximated

by the number of needed viewpoints for
understanding the scene.

Both, proximity-based and minimal path-
based viewpoint ordering, methods give
satisfactory results.

5. Conclusion

New techniques for off-line exploration of
3D scenes have been presented in this
paper. Unlike in on-line incremental

exploration, off-line exploration needs a
first step to prepare data, in order to
improve the quality and the speed of

exploration. In this first step a reduced set
of viewpoints has to be computed from an
initial set and then the viewpoints of the

reduced set have to be ordered for
improved exploration of the scene.

The techniques presented in this paper,
especially the ones used to compute a
minimum set of points of view, may also

be used to improve image-based modelling
and rendering because they allow selection
of pertinent and non redundant positions

for the camera which will capture the
images.

6. Acknowledgments

This project has been supported and

financed in part with funds of the European
project GameTools. The authors would
like to thank all people and organisations

which have supported in any manner this
project.

7. References

 [BDP00a] P. Barral, G. Dorme, D.

Plemenos. Intelligent scene exploration
with a camera. International Conference

3IA’2002, Limoges (France), May 3-4,
2000.

[BDP00b] P. Barral, G. Dorme, D.
Plemenos. Scene understanding techniques
using a virtual camera. Eurographics 2000,

Interlagen (Switzerland), August 20-25,
2000, Short papers proceedings.

[BDP99] P. Barral, G. Dorme, D.
Plemenos. Visual understanding of a scene
by automatic movement of a camera.

International Conference GraphiCon'99,
Moscow (Russia), August 26 – September
3, 1999.

[Col88] C. Colin. A System for Exploring
the Universe of Polyhedral Shapes.

Eurographics’88, Nice (France),
September 1988.

[Dur00] F. Durand. A multidisciplinary
survey of visibility. ACM Siggraph course
notes Visibility, Problems, Techniques,

and Applications 2000

[Dur02] F. Durand, G. Drettakis, C. Puech.

The 3D visibility complex. ACM Trans.
Graph. 2002, 21, 176-206.

[Feixas02] Miquel Feixas, An Information
Theory Framework for the Study of the
Complexity of Visibility and Radiosity in a

Scene. PhD thesis, Technical University of
Catalonia, 2002.

[Feixas99] M.Feixas, E.Acebo, Philippe
Bekaert and M.Sbert. An information
theory framework for the analysis of scene

complexity, Eurographics'99.

 [Jau04] B.Jaubert. Off-line automatic
exploration of virtual worlds. MSc report
(in French), Limoges (France), July 2004.

[KK88] T. Kamada, S. Kawai. A Simple
Method for Computing General Position in

Displaying Three-Dimensional Objects.
Computer Vision, Graphics and Image
Processing, vol. 41, 1988.

 [PB96] D. Plemenos, M. Benayada.
Intelligent Display Techniques in Scene

Modelling. New Techniques to
Automatically Compute Good Views.
International Conference GraphiCon'96, St

Petersburg (Russia), 1-5 of July 1996.

[Ple91] D. Plemenos. A contribution to the

study and development of scene modelling,
generation and display techniques: The
MultiFormes project. Professorial

dissertation. Nantes (France), November
18, 1991. In French.

[Ple03] D. Plemenos. Exploring Virtual
Worlds: Current Techniques and Future
Issues. International Conference

GraphiCon'2003, Moscow (Russia),
September 5-10, 2003.

 [PPV01] P.P. Vázquez, M. Feixas, M.
Sbert, and W. Heidrich. Viewpoint
Selection Using Viewpoint Entropy.

Vision, Modeling, and Visualization 2001
(Stuttgart, Germany), pp. 273-280, 2001.

[PPV02] P.P. Vázquez, M. Feixas, M.
Sbert, and A. Llobet. Viewpoint Entropy:
A New Tool for Obtaining Good Views for

Molecules. VisSym '02 (Eurographics -
IEEE TCVG Symposium on Visualization)
(Barcelona, Spain), 2002.

[PPV03] Pere Pau Vázquez, PhD thesis.
On the Selection of Good Views and its

Application to Computer Graphics.
Technical University of Catalonia, 2003.

[PPV03b] Pere-Pau Vázquez and Mateu
Sbert. Fast adaptive selection of best
views. Lecture Notes in Computer Science,

2003 (Proc. of ICCSA'2003).

[PPV03d] P.P. Vázquez, M. Feixas, M.

Sbert, and W. Heidrich. Automatic View
Selection Using Viewpoint Entropy and its
Application to Image-Based Modeling.

Computer Graphics Forum, desember-
2003.

[PPV03e] Pere-Pau Vázquez and Mateu
Sbert. Automatic indoor scene exploration.
In International Conference on Artificial

Intelligence and Computer Graphics,
3IA’2003, Limoges, May 2003.

[PSF04] D. Plemenos, M. Sbert, M.
Feixas. On viewpoint complexity of 3D
scenes. STAR report. International

Conference GraphiCon’2004, Moscow
(Russia). September 5-10, 2004.

[Rigau00] J. Rigau, M. Feixas, and M.
Sbert. Information Theory Point Measures
in a Scene. IIiA-00-08-RR, Institut

d'Informàtica i Aplicacions, Universitat de
Girona (Girona, Spain), 2000.

[Sbert02] M. Sbert, M. Feixas, J. Rigau, F.
Castro, and P.P. Vázquez. Applications of
Information Theory to Computer Graphics.

Proceedings of 5th International
Conference on Computer Graphics and
Artificial Intelligence, 3IA'2002 (Limoges,

France), pp. 21-36, May 2002.

