
ML-System: Generating Complex Geometries

using L-Systems

Jos�e L. Hidalgo, Emilio Camahort, Francisco J. Abad, and Alejandro Domingo

Departamento de Sistemas Inform�aticos y Computaci�on
Universidad Polit�ecnica de Valencia

Camino de Vera s/n, 46022 Valencia, Spain
fjhidalgo,camahort,fjabad,adomingog@dsic.upv.es

Abstract. We introduce Modular L-System (ML-System), a generic
rewriting engine designed to derive complex geometries based on C/C++
objects. The advantage of ML-System is that it implements solutions
in the same domain as the problem, unlike traditional L-Systems that
require changing the representation domain. Our modeling language is
highly expressive and can describe complex geometric objects that can
be used in game design. We provide some examples of objects generated
with our modeling system.

1 Introduction

Each new generation of games requires more realistic renderings. But quality
image rendering is not enough. Games should allow the user to experience more
complex environments. Most of the e�ort needed to develop a game is done by
artists and designers.

To facilitate modeling, techniques based on procedural generation of geome-
try can be applied. For example, parametric L-Systems have been used for plants
and trees [1], cities [2] and other complex geometries [3].

L-Systems are easy to use, they scale well, and they allow modeling using
multiresolution techniques [4]. Additionally, they allow creating geometry on the
y for dynamic game world generation.

We present an extension to L-Systems, Modular L-System (ML-System), that
uses general C/C++ objects and data structures to easily and e�ciently model
objects like the tower shown in Figure 1. The system also employs a scripting
language to describe the actions of the derivation rules.

2 Previous Work

Two extensions have been previously proposed to extend L-Systems. The L+C
modeling language uses C code instead of rules allowing C code and structures
in the rewriting modules [5]. The system requires compiling and linking models
before display, thus slowing down interactive design. It is also based on the turtle
metaphor and it only allows plant-and-tree modeling.



The FL-System associates functions to terminal symbols [6]. Those functions
generate VRML code, but they do not provide the expressiveness of L+C Sys-
tems. Our goal is to provide a system that can handle general objects with the
same expressiveness as L+C Systems and without the shortcomings of o�ine
generation and display.

3 The ML-System

ML-System is a general rewriting engine based on parametric L-Systems. It
starts with an axiom and repeatedly applies rules to each symbol in parallel
thus obtaining a new derivation chain. It uses the Lua [7] scripting language to
describe rule actions. Thus, no recompiling is needed and rules can be changed
on the y.

Figure 1(right) shows how the system works. Given an object written in
C/C++ the user declares which methods can be accessed by the engine during
derivation. Those methods can be accessed using Lua-C/C++ bindings.

Fig. 1. Left, a tower generated with ML-System, center, one of the building blocks of
the tower, and right, architecture of ML-Sytem.

ML-System

C/C++ 
objects

LUA Rules

bindings

There are two types of rules. Rewriting rules modify the derivation chain
without changing the C/C++ object state. Interpretation rules change the ob-
jects' state without modifying the derivation chain.

Rewriting rules have a left-hand side (lhs) and a right-hand side (rhs). The
lhs has the form \AB < S > DE" where S is the symbol being rewritten and AB

and DE are the left and right contexts, respectively. These contexts are optional.
To match a rule we compare the lhs's symbol and its contexts.

The rhs of a rule is a pre-compiled chunk of scripting code that computes
the output of the rewriting process. Each chunk of code can only access and
modify variables within its own scope. It can also access (read only) the global
variables, the state of the object associated to the rule and the parameters of
the symbols of the lhs. The parameters of the symbols can be any object known



to the scripting language: a number, a string, a table, or any other user-de�ned
object.

When a rule matches, the system places in the rule's scope variables with
the same name as the symbols of the lhs (see Figure 2). The object associated
to the rule (this) is also placed in the rule's scope. This allows the rule to call
methods of the object to check its state. A rule's rhs can return (i) no value, (ii)
nil, or (iii) a list of one or more symbols. (i) leaves the derived chain unchanged;
(ii) removes the symbol of the lhs; and (iii) replaces the symbol of the lhs with
the new list of symbols.

Fig. 2. Components involved in the rewriting process.

Read Only

AB < S > DE 

Compiled
Rule
Body

A ···EDSB···

ta
bl

e

ta
bl

e

ta
bl

e

ta
bl

e

ta
bl

e

B
S
D

A

E

Object
instance methods this Rule 

Environment

Rule

Scripting Environment

match

Interpretation rules are executed after each rewriting step. These rules do not
modify the derivation chain, they only a�ect the state of the C/C++ objects.
Using a combination of rewriting rules and interpretation rules, ML-System can
handle user's objects and modify them.

4 Results and Conclusions

As an example we have developed a C++ extruder object. It has methods to de-
�ne the shape, the extruding direction, the resolution, the length, the curvature
and the cross-section scale factor of each segment. Figure 3 shows four models
generated with this extruder object. The model of Figure 1 was also generated
with the same extruder using di�erent rules and symbols.

We have presented a new approach that can handle any C/C++ object com-
bined with parametric L-Systems. It allows the user to de�ne L-System rules
in the same domain as the application's. In games, this supports generating of
geometry on the y. It can also be used to model other structures such as paths,
textures, Arti�cial Inteligence states, hierarchical models, and higher level ob-
jects like buildings, cities and landscapes.



Fig. 3. Four models generated using a C++ extruder object with di�erent recursion
depths: top row low and high resolution models with recursion = 1, and bottom row

high resolution models with recursion = 2 and recursion = 3.

Acknowledgements

This work was partially supported by grant TIN2005-08863-C03-01 of the Span-
ish Ministry of Education and Science, STREP project IST-004363 of the 6th
Framework Program of the European Union, and by an R+D support grant of
the Universidad Polit�ecnica de Valencia under program PAID-04-06.

References

1. Prusinkiewicz, P., Lindenmayer, A.: The algorithmic beauty of plants. Springer-
Verlag, New York (1990)

2. Parish, Y.I.H., M�uller, P.: Procedural modeling of cities. In: SIGGRAPH '01:
Proceedings of the 28th annual conference on Computer graphics and interactive
techniques, New York, NY, USA, ACM Press (2001) 301{308

3. Tobler, R.F., Maierhofer, S., Wilkie, A.: Mesh-based parametrized l-systems and
generalized subdivision for generating complex geometry. International Journal of
Shape Modeling 8(2) (2002)

4. Lluch, J., Camahort, E., Viv�o, R.: Procedural multiresolution for plant and tree
rendering. In: AFRIGRAPH '03: Proceedings of the 2nd international conference
on Computer graphics, virtual Reality, visualisation and interaction in Africa, New
York, NY, USA, ACM Press (2003) 31{38

5. Karwowski, R., Prusinkiewicz, P.: Design and implementation of the l+c modeling
language. Electronic Notes in Theoretical Computer Science 86(2) (2003) 141{159

6. Marvie, J.E., Perret, J., Bouatouch, K.: The -system: a functional l-system for
procedural geometric modeling. The Visual Computer 21(5) (2005) 329{339

7. Ierusalimschy, R.: Programming in Lua 2ed. Ingram and Baker & Taylor (March
2006)


