
LODManager: a framework for rendering multiresolution
models in real-time applications

J. Gumbau
Universitat Jaume I,

Castellón, Spain
jgumbau@uji.es

O. Ripolles
Universitat Jaume I,

Castellón, Spain
oripolle@uji.es

M. Chover
Universitat Jaume I,

Castellón, Spain
chover@uji.es

ABSTRACT

Many papers have addressed the problem of achieving real time visualization in interactive applications where millions of
polygons are rendered and many objects are visualized. Multiresolution modeling has proven to be a good solution, as it
diminishes the quantity of geometry to render. But this solution is not widely used because it presents inefficient level of
detail update routines that lower the overall performance. We are introducing a set of techniques to adapt the level of detail
while meeting time constraints and maintaining image quality. In order to fulfil the requirements of current game engines, the
LODManager considers exploiting graphics hardware and reuses as possible those levels of detail already calculated. Finally,
we will show the integration of our LODManager in a game engine and we will prove the validity of our solution in an interactive
application.

Keywords: Real-time rendering, level of detail, scene management

1 INTRODUCTION
In recent years, computer graphics have experienced an
intense evolution as new graphics hardware offers a fi-
nal image quality that was totally impossible to imagine
a few years before. This way, interactive graphics ap-
plications, such as computer games, virtual reality envi-
ronments or CAD applications, include more complex
scenes to offer very detailed environments.

The necessity of highly realistic scenarios often in-
volves including many polygonal meshes made up of
a high number of triangles, which poses a problem for
maintaining interactivity. In these applications, it is im-
portant to guarantee stable frame rates while reducing
perceived lag [15]. The lag, which is the delay between
performing an action and seeing the result of that ac-
tion, is as important as the frame rate to perceive inter-
activity in an application.

One of the possible solutions to this problem is the
use of continuous level-of-detail techniques to maintain
a balance between image quality and rendering speed.
Nowadays, multiresolution modeling can be considered
as a compulsory feature of libraries and game engines.
In this sense, graphics libraries like OpenInventor or
OSG, and game engines such as Torque or Ogre, in-
troduce multiresolution models to easily alleviate the
amount of geometry that must be rendered in a scene,

Permission to make digital or hard copies of all or part of
this work for personal or classroom use is granted without
fee provided that copies are not made or distributed for profit
or commercial advantage and that copies bear this notice and
the full citation on the first page. To copy otherwise, or re-
publish, to post on servers or to redistribute to lists, requires
prior specific permission and/or a fee.
Copyright UNION Agency – Science Press, Plzen, Czech Re-
public.

thus resulting in an improvement in performance. Most
of them use static heuristics, like the distance or the
screen-space area, as the metric to select the suitable
level of detail. Other works like [1] add a criterion
based on the occlusion information to obtain a tighter
estimation of the contribution of each object to the
scene. These heuristics, despite improving frame rates,
are usually not enough. They cannot guarantee stable
frame rates and often present jerky frame rates, as they
are not adaptive and cannot work correctly in scenar-
ios where objects are moving in and out of the scene or
where the objects become bigger or smaller quickly.

In order to improve the results of the static heuris-
tics, some authors have introduced the use of feedback
algorithms, which take into account the past rendering
times. These algorithms, even though are more adapted
to the rendering conditions, also suffer from oscillation
and unavoidable overshoot when rendering discontinu-
ous environments. They present a good alternative for
scenarios where there’s a large amount of coherence be-
tween frames, as it happens with flight simulators. This
is the case of the solution presented in [6], which pro-
vides temporal coherence through the runtime creation
of geomorphs to control de level of detail.

Funkhouser and Séquin [4] demonstrated that it is
necessary to use a predictive selection scheme, based
mainly on the complexity of the current frame, rather
than a reactive framework, based on the feedback ob-
tained. They formulated this problem as an optimiza-
tion task which is equivalent to a constrained version of
the Multiple Choice Knapsack Problem. Even though
this problem is NP-complete, some authors like [4] or
[9] obtained several techniques that could only guaran-
tee a solution that is at least half as good as the optimum
one. [14] reconsidered this problem for the special case



of continuous multiresolution models, obtaining a non-
iterative closed form solution which was cheap to eval-
uate for every frame.

This way, the problem of the time-critical multires-
olution rendering can be presented as an optimization
problem for finding the LOD that maximizes the scene
quality under timing constraints. Funkhouser and
Séquin [4] developed a generalization of the predictive
approach, using approximate heuristics of the cost and
the quality obtained that were efficient and accurate
enough to obtain the best image possible within the
target frame time. The work in [5] extended the use of
predictive techniques with more precise heuristics for
the cost and the benefit of the resolution of the objects.
It also considers temporal coherence to minimize
sudden changes, although the authors did not include it
in their tests. These optimizations are very accurate but
costly, and as they assign one variable for each object,
rendering scenes with a large number of objects tends
to be a slow solution.

All the previous approaches apply different kinds of
heuristics: static, feedback or predictive. But, in all
cases, it is necessary to use a criterion to select the
most adequate level of detail. This way, it is possible
to use the size, the speed, the position in the scene, etc.
Many authors have addressed the necessity of investi-
gating how the human perception system works. [11]
considers the necessity of including an analysis of the
human visual system to understand how it works and to
offer more adequate results, extending his results in his
subsequent publications. In this sense, several authors
have included biometrics into their heuristics, consider-
ing spatiotemporal sensitivity [17] or developing frame-
works with eye tracking as the basis [2].

Other authors have addressed this problem from dif-
ferent points of view. The approach presented in [13]
uses a multiresolution hierarchy based on bounding
spheres with a rendering system based on points spe-
cially designed for 3D scanned models with a great ge-
ometric complexity. They perform the LOD selection
based on the projected size in the screen, and adjust
the threshold from frame to frame. They also gradu-
ally refine the model when the viewpoint is not moved
for a period of time. In [3] it is presented a hierarchi-
cal solution which represents the environment with a
scene graph and automatically calculates the different
approximations of portions of the scene graph. Dif-
ferent researchers have presented architectures to solve
this problem, like [7], which use a distributed render-
ing architecture to obtain a stable frame-rate, or [8],
which proposes a parallel architecture combined with
levels-of-detail and occlusion culling techniques. The
most novel aspect of [16] is the concept of interruptible
rendering, which finds a rational compromise between
spatial and temporal detail. They produce a complete
image in the back buffer almost immediately and then

incrementally refine it so that the refinement can be in-
terrupted at any time. Zach [18] presents a solution
based on geomorphing where the LOD management is
achieved by distributing the LOD selection and calcula-
tion between several frames, reusing the old resolution
until the new one is ready. As the new LODs will appear
in future frames, they need a path prediction process to
obtain future viewpoints an directions. They also use
cost and benefits computation, but include some feed-
back strategy to compensate for some assumptions they
make. These authors extended their work in [19], pre-
senting an approach for discrete and continuous models
where the time spent for LOD selection is amortized
over several frames.

This paper presents the following structure. Section
2 presents the motivation for developing this LODMan-
ager. Section 3 contains an overview of the approach
we are presenting. Section 4 discusses the architec-
tural design of the LODManager. Section 5 presents
the results obtained and sketches briefly the framework
where this LODManager was tested. Lastly, Section 6
contains comments on the results and outlines the future
work.

2 MOTIVATION
Many of these articles were written in the early days
of the GPUs (or even in earlier times [4]) when it was
advisable to spend some CPU processing time to opti-
mize the GPU rendering process. Nowadays, due to the
great scalability of the graphics cards, we must revise
all that previous work to provide an updated and prac-
tical viewpoint of that situation: overloading the CPU
is a delicate task that in most cases will cause it to be a
bottleneck for the graphics hardware.

All the previous works have in common that, to op-
timize the GPU usage, they apply complex heuristics
that have an important CPU penalty. This issue is spe-
cialy problematic when dealing with scenes with lots
(some hundreds or even thousands) of LOD objects.
This way, these solutions tend to be CPU bounded, lim-
iting the gross horsepower of the GPUs. In addition,
many of them present high memory overheads, while
others guarantee image quality but not a stable frame
rate. Furthermore, many of the papers which present
hierarchies or pre-calculate LODs are not suitable for
dynamic scenarios as they are aimed at environments
with infrequent motion.

Therefore, the aim of this method is to offer real-time
rendering of dynamic scenes, by means of a LOD man-
ager with very low CPU requirements, freeing the CPU
by minimizing the number of real changes in levels of
detail. We provide a simple while effective method that
lowers the CPU usage in order to keep the bottleneck
on the GPU. This work also uses the concept of frame
rate feedback to automatically adapt the level of detail
of the scene to achieve a target user-defined frame rate.



Figure 1: Left: A LOD scene composed by 3000 LOD objects. Right: A LOD forest populated with 100 highly
detailed trees.

This approach (explained in section 4.2) offers more in-
teresting results as it is an adaptive solution. Adaptive
display has been lately presented as the most suitable
solution to maintain a balance between accuracy and
interactivity, while minimizing the CPU usage as much
as possible.

3 OVERVIEW OF THE APPROACH
Continuous multiresolution LOD models have always
had an associated extraction time. This is defined as the
time needed to compute the new level of detail and to
make it ready to be rendered. For this reason, chang-
ing the level of detail of a high amount of LOD objects
independently tends to be completely unefficient.

The aim of the work presented here is to provide a
framework on which a scene populated with a large
number of multiresolution objects (like a crowd in a
scene or the vegetation in a forest) can be managed ef-
ficiently. This management is based in the fact that a
multiresolution scene can contain a number NT of mul-
tiresolution objects of the same type T . When this oc-
curs, there is a certain possibility that two or more ob-
jects can share a similar level of detail. This similarity
S factor will be explained later. The objective of the
LODManager is to minimize the number of changes in
levels of detail to avoid recalculations. Therefore, the
LODManager must be able to reassign previously cal-
culated levels of detail.

To make this feature effective, the LOD objects must
implement a fast LOD switching functionality to allow
a low-cost update of their active rendering geometry.
For example, this can be accomplished in a real game
engine by changing the object’s active index buffer by
the one supplied by the LODManager. Thus, a LOD
object can hold its own level of detail or a borrowed
one.

Using this technique the number of changes in levels
of detail can be minimized depending on the similarity
factor and on the quantity of objects that need to change

to a particular precalculated LOD, so that they can share
it.

The main contribution of this approach is that
the heuristics proposed in this article, despite being
simpler, are faster and effective to manage big scenes
with lots of several LOD objects virtually changing
its LOD at the same time. Moreover, the method of
sharing already calculated LOD data is completely
GPU-compliant (because in practice LOD objects
share precalculated index buffers) which lowers the
CPU usage for LOD calculations in this kind of scenes.

The core technique of this method is the discretiza-
tion of continuous LOD data on-the-fly by maintain-
ing a user-defined number of different discretizations.
These discrete levels of detail are recalculated in real-
time using a continuous LOD algorithm. The objects in
the scene can decide if they should use one of the avail-
able levels of detail or if it is better to calculate their
own LOD. Therefore, this technique offers a continu-
ous range of approximations while exploiting the simi-
larity between the objects sharing levels of detail. This
method will be explained more deeply in section 4.

4 ARCHITECTURE
Let V be an array where the LODManager stores ref-
erences to all LOD objects in the scene. These objects
might be of different types. Two objects are said to be
of the same type T if they use the same geometry. We
create an array DT of a user defined length NT for each
type of object. These arrays will store the discretiza-
tions at different levels of detail of that type of object.
We assume that the level of detail is defined by a LOD
factor between 0 and 1, where 0 and 1 represents the
minimum and maximum levels of detail, respectively.

More precisely, a position i in the array DT contains a
discrete LOD associated to level of detail i/NT ∈ [0,1].
For example, assume an array DT of length 2. The first
position in the array would represent a discrete snap-
shot for the range [0,0.5) and the second position an
snapshot for the range [0.5,1].



O0

PVO

O2

Oi1 (0,55)

Oi0 (0,65)

Oin (0,57)

…

Oi

O1

On

Object i

Instances of i

(0,56)

(0,61)

(0,32)

…

Dynamic

LOD table

Index Buffer

Index Buffer

Index Buffer

Vertex Buffer

GPUCPU

Oin (0,30)

…

(DT)

(V)

(A)

Figure 2: The LODManager architecture.

This discretization of levels of detail defined by NT
also defines the similarity factor the algorithm will use
to decide when two objects are similar enough to share
the same level of detail. Two objects at two different
LODs are similar when they can be stored in the same
position of DT . More formally, we define a similarity
boolean function S as:

S(OT
1 ,OT

2 )↔ trunc[lod(OT
1 )·NT ] = trunc[lod(OT

2 )·NT ]

where lod(O)∈ [0,1] returns the LOD factor at which
an object O is represented.

We can also define the similarity between two LOD
factors in the same way:

S(lod f1, lod f2,T )↔ trunc[lod f1 ·NT ] = trunc[lod f2 ·NT ]
(1)

Figure 2 presents the LODManager architecture. It
shows a snapshot state of the LOD managing system:
some objects in the scene (V ) use some discretizations
(from DT ). It can be seen that only those objects be-
longing to the Potential Visible Objects list (A) are be-
ing referenced as current active objects. Each element
of DT points to an active index buffer in GPU memory
that represents the object at a certain LOD.

4.1 Algorithm
First of all, an array DT is created for each different
type of objects in V . Each position of each array DT is
initialized to /0.

At each Update step, the LODManager iterates V =
(V0,V1, ...,Vn). Each object Vi has associated a type T
and a desired target LOD factor (dlod(Vi)). The way
this desired LOD factor is calculated is explained in
section 4.2. Thus, for each element Vi:

1. Discard any LOD change if the object has a simi-
lar LOD factor compared to the desired one. This
comparison is performed using the similarity func-
tion described in equation (1).

2. If the LOD must be changed:

(a) Find an object FT which has a similar level of
detail. This is done by accessing at the position
trunc[dlod(Vi) ·NT ] at the array DT (where T is
the type of the object Vi).

(b) Compare the similarity of lod factor of FT to
dlod(Vi). This can be done using equation (1).

(c) If they are NOT similar enough:

i. Change the level of detail of the object Vi

ii. Update lod f (Vi) with the new LOD factor.
iii. Calculate the position in DT depending on

lod f (Vi) (using this formula: trunc[lod f (Vi) ·
NT ]). After this step, that position of DT
points to the object Vi.

(d) If they are similar enough:

i. Make Vi to use the level of detail already cal-
culated by FT . In practical terms it means to
make Vi use the index buffer of FT .

ii. if Vi ∈ DT → Remove Vi from DT .

It is important to note that the implementation must
be aware of sharing index buffers. When an object bor-
rows the index buffer from another it is important that
the original object stores a reference to its own index
buffer. That’s because when an object changes its level
of detail, it must update its own index buffer, not the
borrowed one.

The number of elements in DT affects the perfor-
mance as it represents the number of discretizations
available, and therefore affects the number of LOD re-
calculations. The user can freely increase the number
of elements in DT for finer granularity of the similarity
comparisons, as the spatial cost can be negligible as it
only stores references to objects.

4.2 Heuristics
The active objects list. In order to simplify the algo-
rithm explanation, we have assumed that the algorithm
iterates through the whole list of objects in the scene
(V ). However, when dealing with a high number of
LOD objects, iterating through all those elements tends
to be unefficient. To solve this problem, a list of active
(or more important) objects (A) can be maintained. For
deciding which objects must be included or excluded
from the active objects list, we create an initially empty
list A of a user-defined constant size Na. Every object
Vi has a value assigned depending on the difference be-
tween the ideal LOD and the real LOD lod f (Vi). Ob-
jects outside the frustum are given a penalization factor
to ensure that the algorithm potentially discards them.
Thus, objects outside the frustum will only have the op-
portunity to be included it they are near enough to the
camera, or in other words, if they are about to be in-
cluded in the frustum.



Figure 3: Perturbation function to calculate the desired
LOD factor to adapt it to the current frame rate. For
example, n = 2 will cause a global reduction in the de-
sired LOD factors.

The desired LOD factor. We define the desired LOD
factor (or dlod f (Vi)) associated to a LOD object as the
ideal LOD the object needs to change to, depending
on certain heuristics. We define it as ideal because an
object Va can takes an already precalculated LOD, by
similarity, from another object Vb, that may have not
exactly the same LOD factor.

To calculate dlod f (Vi) we use an heuristic that takes
as input the distance of the object to the camera and
the current application frame rate. The distance to the
camera defines a linear function that is mapped to the
range [0,1], as shown below:

lod =− distcam− rangenear

range f ar− rangenear

This value is clamped to the range [0,1] and is per-
turbed depending on the current frame. The aim is to
use the frame rate as a feedback parameter to alter the
linearity of the LOD function to fulfil that: 1) if we
are running under the desired frame rate, we must use
coarser levels of detail; and 2) if we are running above,
more objects will increase their LOD. We use the two
perturbing functions dlod f = lodn and dlod f = lod1/n

to increase or decrease, respectively, the global desired
level of detail. The higher the parameter n, the faster
the objects will increase or decrease their LOD. An il-
lustrative picture is shown in Figure 3.

4.3 Non-linear precalculated LOD inter-
vals

We have assumed for clarity that the vector DT , which
stores snapshots of previously calculated levels of de-
tail, has a linear distribution. However, more real ap-
plications will prefer to use a non-linear distribution to
allow for much finer LOD changes for closer models
and much coarser LOD changes for objects that are far
away from the viewer.

1 2 3 4 5 6 7 8 9 10

1 2 3 4 5 6 7 8 9 10

Linear distributed LOD snapshots along viewing distance:

Non-linear distributed LOD snapshots along viewing distance:

near far

near far

Figure 4: Linear vs non-linear LOD snapshots distribu-
tion

This distribution function can be customized by the
user so that it can be used in very different client ap-
plications and situations. An illustration can be seen in
Figure 4.

This optimization will reduce popping effects be-
cause queries for closer models will be classified with
less granularity. It is important to notice that equation 1
should be adapted to the new snapshot distribution.

5 IMPLEMENTATION AND RESULTS
5.1 Library usage
We have implemented this method as a library which
is independent of the underlying multiresolution model
used to represent the objects. There are only some re-
quirements that the multiresolution model must fulfil.
These requirements are:

• The objects must provide an interface to change their
level of detail. This interface must be implemented
using the range [0,1] as the active LOD range.

• The objects must be able to implement a fast LOD
switching functionality. In practice, this can be done
by borrowing index buffers from other objects while
keeping the original index buffer for further LOD
calculations.

Our implementation provides a LodObject class
interface that provides some virtual functions the mul-
tiresolution that the models must implement. Thus, it is
really simple to handle several types of different mul-
tiresolution models inside the same scene.

5.2 LOD Models
In our implementation we have used two different mul-
tiresolution models: one for general meshes called Lod-
Strips [10] and another one designed to handle the fo-
liage of plants and trees, which we will call LodTrees
[12].



LodStrips is a multiresolution model based on trian-
gle strips. It efficiently defines a continuous sequence
of level of detail changes from a base mesh. It is a
index-based multiresolution model, i.e. it calculates the
current index set for a defined level of detail, without
affecting to the vertex list.

LodTrees is a multiresolution model used to handle a
continuous level of detail management for the foliage of
trees and plants. It is based on a leaf-collapse operation
in which each simplification step removes two leaves
and replaces them by a new single leaf that keeps the
appearance.

Both models require a certain amount of time to
change the level of detail, depending on how much
change must be accomplished, and they can easily im-
plement the fast LOD switching functionality described
in section 3. Therefore, they are valid base multiresolu-
tion models to demonstrate the usefulness of our man-
ager.

5.3 Tests and results
We have used two different polygonal models for the
tests. The Ogre mesh features 1960 triangles and its
minimum level of detail reduces the triangle count to
a 10%. It implements the LodStrips algorithm (briefly
described in section 5.2). The Tree mesh represents an
Olea europaea with 97133 triangles at full level of de-
tail; it uses the LodTree algorithm to reduce its triangle
count to 10% at its minimum level of detail.

Two different tests are proposed: a performance test
which measures the performance boost when using the
LODManager, and a visual quality test that will prove
the visual acceptability of the method. The test machine
has been an Athlon 64 3500+ with 1 Gb RAM and a
GeForce 6800 Ultra.
Performance test We have used two different test
scenes. The first scene has been populated with 3000
independent LOD objects of the Ogre mesh, shown in
Figure 1. The second scene adds 100 tree LOD objects
to the previous one to show how the algorithm can deal
with heterogeneous scenes.

All demos move the camera through a predefined
path. Figure 6 shows the frame rate comparison en-
abling and disabling the LODManager in both scenes.
Thus, the improvements in performance offered by the
LODManager can be easly measured. In addition, this
Figure offers the number of triangles rendered during
the walkthrough. These graphs are a good help to un-
derstand the frame rate obtained, and also proves how
the number of triangles rendered with and without the
LODManager is nearly the same, proving that our solu-
tion offers higher frame rates while maintaining a sim-
ilar visual quality.

The two graphs on top of Figure 6 show a similar pat-
tern: the LODManager efficiently manages level of de-
tail changes and minimizes the CPU consumption due

Figure 5: Top: screenshot of a scene using the LOD-
Manager. Middle: screenshot of the scene with the
LODManager disabled. Bottom: per-pixel differences
between the other two pictures

to the LOD management. In fact, when dealing with
scenes with a high count of independent LOD objects
(like in the scene of the 3000 ogres), the CPU con-
sumption dedicated to LOD changes can become the
bottle neck of the application reducing the performance
to make it unsuitable for interactive content.

Visual quality test We have provided some perfor-
mance tests where our LODManager proves its useful-
ness in Lod scenes populated with lots of independent
LOD objects. Now we will show that our heuristics
do not affect the visual quality of the models in a sig-
nificant manner. The top image in Figure 5 shows the
scene populated with ogres using our technique to man-



Figure 6: Performance comparison with and without LODManager in two different scenes, showing the FPS and
triangles rendered throughout the scenes.

age the level of detail of the whole scene. The middle
image shows the same scene without any LOD man-
agement approach active, i.e. each independent object
treats its own level of detail independently. The differ-
ences caused by our method are shown in the Figure 5,
where a red pixel shows a difference between the two
images. We can see that the visual differences are al-
most imperceptible.

6 CONCLUSIONS
We have introduced a new technique to minimize the
number of level of detail changes of a scene populated
with a high count of LOD objects. This technique al-
lows the reuse of LOD calculations to minimize the
CPU computation time. In section 1 we have analyzed
some methods which use more complicated heuristics
than ours, and thus, require more computation time.
Our algorithm also features a feedback heuristic that is
able to globally reduce or increase the LOD of the scene
to achieve a user defined frame rate.

Nowadays, the great scalability of the graphics pro-
cessor units has contributed to make them far more
powerful than the CPUs. Thus, real world applications
tend to be CPU bound and the GPU becomes limited by
the CPU power. It is more useful a technique that saves
CPU time as well as providing an real world acceptable
LOD management, rather than more sophisticated tech-
niques that consumes CPU to save GPU cycles. This

is specially true when dealing with scenes with a high
number of LOD objects, where predictive methods tend
to be completely unsuitable for real time applications.

Even though our technique has been designed to be
much simpler than predictive heuristics, it has proved to
be simple to implement and effective to minimize CPU
consumption, to manage heterogeneous LOD scenes
and to help maintain a target user-defined frame rate.

ACKNOWLEDGEMENTS
This work has been supported by the Spanish Min-
istry of Science and Technology (TIN2004-07451-C03-
03), the Spanish Ministry of Science and Education
(FPU grants), the European Union (IST-2-004363) and
FEDER funds.

REFERENCES
[1] Carlos Andújar, Carlos Saona-Vázquez, Isabel

Navazo, and Pere Brunet. Integrating occlusion
culling with levels of detail through hardly-visible
sets. Computer Graphics Forum (Proceedings of
Eurographics ’00), 3:499–506, 2000.

[2] R. Danforth, A. Duchowski, R. Geist, and
E. McAliley. A platform for gaze-contingent vir-
tual environments, 2000.

[3] Carl Erikson and Dinesh Manocha. Hierarchical
levels of detail for fast display of large static and



dynamic environments. Technical report, Chapel
Hill, NC, USA, 2000.

[4] Thomas A. Funkhouser and Carlo H. Séquin.
Adaptive display algorithm for interactive frame
rates during visualization of complex virtual envi-
ronments. Computer Graphics, 27(Annual Con-
ference Series):247–254, 1993.

[5] Enrico Gobbetti and Eric Bouvier. Time-critical
multiresolution scene rendering. In Proceedings
IEEE Visualization, pages 123–130, Conference
held in San Francisco, CA, USA, October 1999.
IEEE Computer Society Press.

[6] Hugues Hoppe. Smooth view-dependent level-of-
detail control and its application to terrain render-
ing. In VIS ’98: Proceedings of the conference
on Visualization ’98, pages 35–42, Los Alamitos,
CA, USA, 1998. IEEE Computer Society Press.

[7] J. Edward Swan II, Jesus Arango, and Bala Kr-
ishna Nakshatrala. Interactive distributed
hardware-accelerated LOD-sprite terrain render-
ing with stable frame rates. In Proc. SPIE Vol.
4665, p. 177-188, Visualization and Data Analy-
sis 2002, pages 177–188, March 2002.

[8] William V. Baxter III, Avneesh Sud, Naga K.
Govindaraju, and Dinesh Manocha. Gigawalk: in-
teractive walkthrough of complex environments.
In EGRW ’02: Proceedings of the 13th Euro-
graphics workshop on Rendering, pages 203–214,
Aire-la-Ville, Switzerland, Switzerland, 2002.
Eurographics Association.

[9] Ashton E. W. Mason and Edwin H. Blake.
A graphical representation of the state spaces
of hierarchical level-of-detail scene descriptions.
IEEE Transactions on Visualization and Com-
puter Graphics, 7(1):70–75, 2001.

[10] J. F. Ramos and M. Chover. Lodstrips: Level of
detail strips. In International Conference on Com-
putational Science, pages 107–114, 2004.

[11] Martin Reddy. Reducing lags in virtual reality
systems using motion-sensitive level of detail. In
Proceedings of the second UK VR-SIG Confer-
ence, 1994.

[12] I. Remolar, M. Chover, J. Ribelles, and O. Bel-
monte. View-dependent multiresolution model
for foliage. Journal of WSCG’03, 11(2):370–378,
2003.

[13] Szymon Rusinkiewicz and Marc Levoy. QSplat:
A multiresolution point rendering system for large
meshes. In Kurt Akeley, editor, Siggraph 2000,
Computer Graphics Proceedings, pages 343–352.
ACM Press / ACM SIGGRAPH / Addison Wesley
Longman, 2000.

[14] Michael Wimmer and Dieter Schmalstieg. Load
balancing for smooth lods. Technical Report TR-

186-2-98-31, Institute of Computer Graphics and
Algorithms, Vienna University of Technology,
Favoritenstrasse 9-11/186, A-1040 Vienna, Aus-
tria, December 1998. human contact: technical-
report@cg.tuwien.ac.at.

[15] M. Wloka. Lag in multiprocessor virtual reality.
Presence, 4(1):50–63, 1995.

[16] Cliff Woolley, David Luebke, Benjamin Watson,
and Abhinav Dayal. Interruptible rendering. In
SI3D ’03: Proceedings of the 2003 symposium
on Interactive 3D graphics, pages 143–151, New
York, NY, USA, 2003. ACM Press.

[17] Hector Yee, Sumanita Pattanaik, and Donald P.
Greenberg. Spatiotemporal sensitivity and visual
attention for efficient rendering of dynamic en-
vironments. In ACM Transactions on Graphics,
pages 39–65. ACM Press, 2001.

[18] Christopher Zach. Integration of geomorphing
into level of detail management for realtime ren-
dering. In SCCG ’02: Proceedings of the 18th
spring conference on Computer graphics, pages
115–122, New York, NY, USA, 2002. ACM Press.

[19] Christopher Zach, Stephan Mantler, and Konrad
Karner. Time-critical rendering of discrete and
continuous levels of detail. In VRST ’02: Pro-
ceedings of the ACM symposium on Virtual reality
software and technology, pages 1–8, New York,
NY, USA, 2002. ACM Press.


