
Triangle Strip Multiresolution Modelling using
Sorted Edges ?

Ó. Belmonte Fernández, S. Aguado González, and S. Sancho Chust

Department of Computer Languages and Systems
Universitat Jaume I

12071 Castellon, Spain
oscar.belmonte@uji.es

Abstract. This paper presents a new multiresolution model based ex-
clusively on the triangle strip primitive. The model is independent of the
initial set of triangle strips and the simplification method used to ob-
tain the lower resolution versions of the original model. The information
stored in the data structures is sorted to minimise the time needed to
recover a Level of Detail (LoD). The orientation of triangles in each strip
is maintained as the model is simplified, so back-face culling can be used.
The main result is a dramatic improvement in the rendering time.

1 Introduction

Polygonal meshes are widely used to describe surfaces in Computer Graphics, es-
pecially in Real Time Computer Graphics, and triangle meshes are the most pop-
ular representation of such models. Triangle meshes currently used in Computer
Graphics are composed of thousands of triangles. A good example of this are the
polygonal models used in cultural heritage [7]. Rendering these highly detailed
polygonal models is a challenging problem in interactive Computer Graphics
applications, where a minimum rate of 15 frames per second is needed to mimic
continuous movement.

To address this problem, multiresolution models try to adapt the number of
triangles in a scene according to some criterion [8, 5, 11]. The basic primitive in
these models is the triangle. Only a few models use the triangle strip primitive
in the rendering stage [6, 2], and only recent works have used this primitive both
in the data structures and in the rendering stage [1, 9]

This work presents a continuous multiresolution model based exclusively on
the triangle strip primitive. The model is independent of the initial collection
of triangle strips. Unlike [9], the model is also independent of the simplification
method used to obtain the lowest resolution of the original model. The inner
edges of each triangle strip are sorted to achieve quick recovery of a demanded
LoD. Another characteristic that distinguishes this model from [1, 9] is that tri-
angle orientation is maintained at any level of detail, so back-face culling can be
? This work was partly supported by grant P1 1B2005-17 of Fundació Caixa Castelló-

Bancaixa, and grant IST-2-004363 of the European Community.

used. The result is a dramatic improvement over models based on triangles and
better performance than models based exclusively on the triangle strip primitive.

The rest of the paper is organised as follows, Section 2 includes a review of
previous work Section 3 presents the new multiresolution model. Section 4 shows
the experiments carried out and their results. Finally, section 5 summarises the
main conclusions.

2 Previous Work

In [6] H. Hoppe presented a view-dependent multiresolution model in which
data is stored in a hierarchy similar to that presented in [12]. After the recovery
algorithm has recovered a set of triangles for a given LoD, triangle strips are
searched over them. This model used triangle strips only in the rendering stage.

In [2] El-Sana et al. presented a view-dependent multiresolution model for
polygonal models. The basic data structure of the model is the hierarchical tree
presented in [12]. Triangle strips are searched over the model using the STRIPE
algorithm [3], with the constraint of not generating strips with swap operations.
These triangle strips are coded as skip-list data structures. In this case triangle
strips are more closely related to the basic data structures of the model, but
they are not an essential compound of it.

F. Ramos et al. [9] presented a view-dependent multiresolution model whose
only data structure is the triangle strip. The building of the model used an ad
hoc sequence of vertex pair contractions, so the model losses quality at lower
resolutions. This model does not maintain the orientation of the triangles in the
strip for every LoD, and hence back-face culling can not be applied.

In [1] Ó. Belmonte et al. presented a multiresolution model based exclusively
on the triangle strip primitive. Although this model provides a frame rate that
doubles those provided by multiresolution models based on triangles, its recovery
time is in general higher than that offered by this latter type of model. Moreover,
this model does not maintain the orientation of the triangles in the strip for every
LoD, and so back-face culling can not be applied.

3 The Sorted Edge Triangle Strip Model

The information required to begin the building of a SETS multiresolution model
is a set of triangle strips over the polygonal model. Any triangle strip search
algorithm can be used to do this, for example an algorithm that takes advantage
of the vertex cache size to minimise vertex cache misses or a general triangle
strip search algorithm. We have chosen the STRIPE algorithm [3] because it
minimises the number of swap operations in the strips.

The triangle strip search algorithm does not impose any restriction upon the
simplification method that can be used to obtain the simplified version of the
original model. Furthermore, no restrictions are imposed upon the triangle strip
search algorithm by the simplification method.

Any simplification method can be used on the initial set of triangle strips
to obtain the simplified versions of the original model. We have opted for the
QSlim algorithm [4]. This algorithm works by collapsing pairs of vertices and,
given a target number of triangles, it is able to simplify the original polygonal
model to reach a number of triangles near the target number. The output of this
algorithm is an ordered sequence of the pairs of collapsed vertices.

If a vertex in a triangle strip collapses, the sequence that describes the strip
must then be updated. A special case occurs when the vertex at the beginning of
the strips changes and the previous beginning is no longer valid. Figure 1 shows
a series of pairs of vertex collapses and the updated sequences of vertices.

L o D: 0
[a, b, c, d, e, f, g, h]
a c e g

b d f h

c d a b

L o D: 2
[d, d, e, f, g, h]

e g

d f h

f d

L o D: 3
[e, d, g, h]

e g

d h

g h

L o D: 4
[e, d, h]

e

d h

L o D: 1
[a, b, d, d, e, f, g, h]
a e g

b d f h

Fig. 1. After each pair of vertices collapses the sequence that describes the triangle
strip must be updated to properly describe the new strip.

For instance, let us first take vertex b. At LoD 0, vertex b is followed by
vertex c, which we denote by b → c(0). At LoD 1, the sequence of vertices that
describes the strip has changed, and vertex b is followed by vertex d, which we
denote by b → d(1). Vertex b does not appear at any other LoD.

Let us now take vertex d as an example. At LoD 0, vertex d is followed by
vertex e (d → e(0)). At LoD 1, the first occurrence of vertex d is followed by
vertex d and the second occurrence is followed by vertex e, which we denote
as d → d, e(1). At LoD 2, vertex d is followed by vertices d, e and g, which is
denoted as d → d, e, g(2). Finally, at LoD 3, vertex d is followed by vertices d
and g (d → d, g(3).

So, the information that needs to be store, for each level of detail, in the
multiresolution model is: a) The vertex at the beginning of the strip and the
maximum LoD until it is valid; b) The sorted sequence of vertices after a given
one and the maximum LoD until it is valid.

3.1 Data Structures

A labelled graph is used to efficiently store the information needed to recover the
sequence of the strip for each LoD. In this graph, each node (ColElm) represents
a vertex in the strip, each arc (RawElm) is the series of vertices following on from
that vertex, and the label in the arc (RawElm.resolution) means the maximum
LoD at which the series is valid.

The vertices at the beginning of the strip (StripBeginning) and the max-
imum LoD until these become valid are stored in an array. Table 1 shows the
data structure used in the model.

Table 1. Data structures of the model.

StripBegenning RawElm ColElm MultiresolutionStrip
Integer resolution Integer resolution Integer idVertex Array aStripBeginning
Integer idColElm Array aIdColElm Array aRawElm Array aColElm

Integer shift Array aResolution

3.2 Building Process

The building process is performed just once for each polygonal model, and the
resulting information is stored as the multiresolution representation of the model.

If vertex a collapses over vertex b, all occurrences of vertex a must be replaced
with vertex b in the sequence of vertices that describes the strip. In some cases,
the sequence can be optimised by removing subsequences of the main sequence
while maintaining the orientation of the triangles in the strip. The two conditions
that a sub-sequence must comply with in order to be removed are: a) The number
of vertices that are removed must be even, b) The remaining vertices must not
add new information, that is, they must not describe triangles that do not exist
before removing.

The initial sequence of vertices in Figure 1 is [a, b, c, d, e, f, g, h], and the
first triangle in the sequence is oriented counter-clockwise, so the triangle at the
beginning of the sequence must be counter-clockwise oriented for every LoD. The
first contraction moves vertex c over vertex d (c → d) and the updated sequence
is [a, b, d, d, e, f, g, h]; thus, no optimisation can be performed over this sequence.
The next contraction is (a → b), the updated sequence is [b, b, d, d, e, f, g, h], and
in this case it can be optimised to [d, d, e, f, g, h] which is the correct counter-
clockwise sequence. Finally, the third contraction (f → d) yields the sequence
[d, d, e, d, g, h], and this can be optimised to [e, d, g, h], the first triangles of which
have the correct orientation.

Following with the example in Figure 1, the first LoD is 0, and for this vertex
a is the vertex at the beginning of the strip. This information is stored in the
array of vertices at the beginning of the strip, as shown in Figure 2. Vertex a has
just one successor in the sequence, vertex b, so this is added to vertex a as an arc
with the current resolution. This was noted this by a → b(0). In the same way,
vertex b has only one successor in the sequence of vertices, vertex c, so this is
added to b as an arc with the current resolution b → c(0). The building process
continues until the last vertex in the strip, which is vertex h, is reached. In this
case, the special arc END is added to h, and noted by h → END(0).

At the next LoD 1, vertex a is still the vertex at the beginning of the strip,
so its maximum LoD must be updated. In the same way, if the successors of a
vertex are the same as in the previous LoD, only the information relative to the
resolution must be updated in the corresponding arc; otherwise, a new arc with
the new vertices and the current resolution must be added.

L o D: 0

a (0)
a b (0)
b c (0)
c d (0)
d e (0)
e f (0)
f g (0)
g h (0)
h end (0)

L o D: 1

a (1)
a b (1)
b c (0) d (1)
c d (0)
d e (0) d, e (1)
e f (1)
f g (1)
g h (1)
h end (1)

L o D: 2

a (1); d (2)
a b (1)
b c (0) d (1)
c d (0)
d e (0) d,e (2)
e f (2)
f g (2)
g h (2)
h end (2)

L o D: 3

a (1); d (2); e (3)
a b (1)
b c (0) d (1)
c d (0)
d e (0) d,e (2) g (3)
e f (2) d (3)
f g (2)
g h (3)
h end (3)

L o D: 4

a (1); d (2); e (3)
a b (1)
b c (0) d (1)
c d (0)
d e (0) d,e (2) g (3) h(4)
e f (2) d (4)
f g (2)
g h (3)
h end (4)

Fig. 2. Building process of a multiresolution triangle strip.

3.3 LoD Recovery Algorithm

The recovery algorithm traverses the data structures to recover the model at
the demanded LoD. The elements in the array of nodes at the beginning of the
strip and the arcs for each node in the graph are sorted according to the LoD,
and then a dichotomic search can be used over them. In addition, once an arc is
found, this is valid for all successors of the node at the same resolution.

algorithm LoDrecover(res)

begin

id=aStripBeginning.dichotomicSearch(res)

while(id ! = END)

storeCoords(aColElm[id].shift)

shift = vECol[id].shift

if shift == 0

aColElm[id].dichotomicSearch(res)

aColElm[id].shift++

id = aColElm[id].aRawElm.

current(shift)

endWhile

end

Fig. 3. Level of detail recovery algorithm.

Figure 3 summarises the recovery algorithm. The recovery algorithm starts by
performing a binary search over the array of vertices at the beginning of the strip
MultiresolutionStrip.aStripBeginning at a given resolution. If a vertex is
found, its StripBeginning.idColElm is the identifier of the node from which
the traversal of the graph must be begun. The traversal is done through arcs
whose valid resolution is strictly lower than the given resolution. If the node
has not yet been visited (ColumnElm.shift == 0), a binary search is carried
out over the arcs; otherwise, the binary search is not needed because the field
ColElm.shift points to the next vertex in the sequence. The algorithm stops
when an arc with the label END is reached. Figure 4 shows two examples of the

recovery process. The grayed nodes and arcs are traversed during the recovery
process.

3.4 Coherence

Coherence means recovering only data that has changed from one LoD to an-
other, while maintaining data that remains in both LoDs. In the SETS model
this implies traversing just those graphs whose vertex sequence has changed.

To achieve this, a validity interval is defined for each strip, the bounds of
which represent the minimum and maximum LoD until the current sequence is
valid. This is encoded as an array containing LoDs at which a change in the
sequence happens. This array is filled up when the model is loaded, so that two
consecutive LoDs in the array are the bounds of the validity interval. At the
beginning, the bounds in the validity interval are LoDs at position 0 and 1 of
the array. When a new LoD is demanded, if it is within the validity interval the
sequence that represents the strip is valid, otherwise the graph must be traversed.
Finally, the bounds of the interval are updated, the maximum bound being the
first element in the array greater than the current LoD, and the element in the
previous position is the minimum bound.

L o D: 1

a (1); d (2); e (3)
a b (1)
b c (0) d (1)
c d (0)
d e (0) d,e (2) g (3) h(4)
e f (2) d (4)
f g (2)
g h (3)
h end (4)

L o D: 3

a (1); d (2); e (3)
a b (1)
b c (0) d (1)
c d (0)
d e (0) d,e (2) g (3) h(4)
e f (2) d (4)
f g (2)
g h (3)
h end (4)

Fig. 4. LoD 1 is demanded on the left, LoD 3 on the right.

4 Experimental Results

This section begins by showing the spatial cost of the multiresolution model. The,
visualisation time of the SETS model is then compared with a modification of the
MTS model [1] in which the orientation of the triangles in the strip is preserved
as the model is simplified.

The tests were conducted using the models whose characteristics are shown
in Table 2. The platform used was a Pentium IV processor at 1.8 GHz. with
256 Kb cache, 1 Gb RAM and an nVidia GeForce3 Ti 200 graphics card. The
compiler used was gcc 3.3.3 version in a Linux 2.6.5 kernel.

Table 2 also shows the memory size of the SETS multiresolution models
compared to those for the MTS multiresolution models. In all cases the size of

Table 2. Polygonal data and spatial cost of the multiresolution models in Mb.

Model #Vertices #Triangles #Strips SETS MTS

Cow 2904 5804 136 0.338 0.253
Bunny 34834 69451 1229 4.150 2.964
Phone 83044 165963 1747 9.832 6.766

the SETS models are bigger than the MTS models, but we think that the better
performance of the recovery algorithm offsets this disadvantage.

The tests conducted to measure the performance of the recovery algorithm
were those defined in [10]. Each test recovers a percentage of the total number
of LoDs, and the total time is averaged over the number of LoDs recovered. The
difference between the tests is the distribution taken to recover the LoDs: linear
or exponential. The linear distribution takes LoDs with the same distance in
between; the exponential distribution takes close LoDs when they are next to
the maximum resolution, and distant LoDs when they are next to the minimum
resolution. These two tests can be interpreted as the model moves towards or
away from the observer.

In both tests 1, 3, 6, 10, 15 and 20% of the total number of LoDs present
in the multiresolution model were recovered. To avoid possible influences of the
direction of the tests, these start at the maximum LoD, descend towards the
minimum LoD and then return to maximum LoD.

Table 3 shows that the more LoDs are recovered the lower the average time
is, regardless of the model and the test used. This behaviour is due to the use of
coherence, the lower the distance between LoDs is, the more LoDs are recovered.

The visualisation time is higher for the exponential than for the linear test.
This is due to the fact that the number of vertices recovered is higher in the
exponential than in the linear test, and so more time is used in rendering.

The SETS model yields better results than the MTS model, as it has more
triangles. This is due to the fact that data is stored in the data structures of
the SETS model in a sorted way, and in this way the sequence that represents a
triangle strip can be recovered faster than in the MTS model. The SETS model
also yields better results as more LoD are recovered in all cases.

5 Conclusions

A new multiresolution model based only on the triangle strip primitive has been
presented. The main characteristic of the model is that data is stored in a sorted
fashion, taking into account the maximum LoD at which any inner edge exists.
The building of the models is independent both of the algorithm used to find a
collection of triangle strips and the simplification method use to obtain simplified
versions of the original model. In addition, the orientation of the triangles in a
strip is preserved as it is simplified so that back-face culling can be used to speed
up the rendering stage.

Table 3. Visualisation time results for the tests. Time in ms.

Cow Bunny Phone
Linear Exponential Linear Exponential Linear Exponential

LoD MTS SETS MTS SETS MTS SETS MTS SETS MTS SETS MTS SETS

1% 1.186 1.694 1.186 1.525 11.951 11.922 12.253 11.520 26.683 25.189 28.194 24.346
3% 1.200 1.371 1.086 1.428 10.010 8.544 10.761 8.645 22.914 18.089 25.156 18.107
6% 0.974 1.146 0.974 1.117 9.143 7.071 10.012 7.401 21.427 15.107 23.918 15.645
10% 0.929 0.963 0.947 0.998 8.715 6.342 9.700 6.741 20.625 13.604 23.224 14.380
15% 0.861 0.861 0.873 0.872 8.468 5.908 9.497 6.352 20.206 12.757 22.881 13.691
20% 0.818 0.775 0.861 0.792 8.334 5.659 9.383 6.182 19.940 12.359 22.664 13.301

The main result is a speeding up of the visualisation time, 70% faster in the
best case, as compared to that offered by models that do not use sorted data.

The main drawback is an increase in the spatial cost of the models in main
memory, but we believe that this is well justified taking into account the better
performance offered by the model.

References

1. Ó. Belmonte, I. Remolar, J. Ribelles, M. Chover, M. Fernández. Efficiently Using
Connectivity Information between Triangles in a Mesh for Real-Time Rendering.
Future Generation Computer Systems, 20(8), pp: 1263-1273, 2004.

2. J. El-Sana, E. Azanli, A. Varshney, Skip Strips: Maintaining Triangle Strips for
View-dependent Rendering, IEEE Visualisation ’99, pp:131-138, 1999.

3. F. Evans, S. Skiena, A. Varshney, Optimising triangle strips for fast rendering,
IEEE Visualisation ’96, pp: 319-326, 1996.

4. M. Garland, P. Heckbert, Surface Simplification Using Quadric Error Metrics, Pro-
ceedings of SIGGRAPH ’97, pp: 209-216, 1997.

5. M. Garland. Multiresolution modelling: survey & future opportunities, State of the
Art Reports of EUROGRAPHICS ’99, pp: 111-131, 1999.

6. H. Hoppe, View-dependent refinement of progressive meshes, Proceedings of SIG-
GRAPH ’97, pp: 189-197, 1997.

7. M. Levoy et al, The digital Michelangelo project: 3D scanning of large statues.
Proceedings of SIGGRAPH 2000, 2000.

8. D. Luebke, M. Reddy, J. D. Cohen, A. Varshney, B. Watson, R. Huebner. Level of
detail for 3D graphics. Morgan-Kaufmann, 2003.

9. F. Ramos, M. Chover, LodStrips, Proceedings of Computational Science ICCS
2004, pp: 107-114, 2004.

10. J. Ribelles, M. Chover, A. López, J. Huerta, A First Step to Evaluate and Compare
Multiresolution Models, Short Papers and Demos of EUROGRAPHICS’99, pp:
230-232, 1999.

11. J. Ribelles, A. López, O. Belmonte, I. Remolar, M. Chover. Multiresolution mod-
eling of arbitrary polygonal surfaces: a characterization. Computers & Graphics,
26(3), pp: 449-462. 2002.

12. J. Xia, A. Varshney. Dynamic View-Dependent Simplification for Polygonal Mod-
els, Visualization ’96 Proceedings, pp: 327-334, 1996.

