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Abstract. Real-time rendering of vegetation is currently a problem in
need of a solution. The large number of polygons that form this kind of
objects means that current hardware cannot achieve interactive render-
ing of outdoor scenes. This paper deals with the problem and it presents
a multiresolution scheme that allows us to represent the whole geometry
of the trees using both uniform and variable levels of detail. The method
presented here models the trees using two multiresolution models. This is
due to the different characteristics of the geometry that forms them. The
trunk is modelled by LodStrips, a model oriented towards representing
continuous meshes, and the foliage is modelled by the multiresolution
model Level of Detail Foliage, presented in a previous work. In this pa-
per, it has been efficiently implemented and extended to allow us to
change the level of detail in a variable way, by adapting the resolution
of this part of the tree to certain criteria determined by the application.
Both of them have been designed to be hardware-oriented. They take
advantage of the graphics hardware by adapting the data structures and
the rendering algorithms to make the visualisation time efficient. Finally,
the multiresolution scheme presented in this paper is compared with the
only work that has appeared up to now that uses the same technique.

1 Introduction

Most interactive applications currently available are set in outdoor scenes. In
these environments, trees and plants make the scenes more similar to the real
world. A vast number of works on modelling vegetal species have appeared up
to now, nowadays it is therefore possible to obtain very realistic tree models.
However, the problem arises when real-time rendering is required by the appli-
cation. The more realistic the vegetation objects are, the greater the number of
polygons they contain.

Depending on the technique used to solve this problem, methods can be di-
vided into two important groups: image-based and geometry-based rendering.
Geometric representation has many advantages, the most important of which
is that trees do not lose realism even when the camera is extremely near the
object. Another important advantage is that geometry can be stored either in
the main memory or directly in the graphics card, thus taking advantage of cur-
rent graphics-hardware. Moreover, using geometry to represent objects makes it
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possible to obtain shadows and different lighting effects, as well as greater accel-
eration in rendering. Geometry-based approaches have used several techniques
to achieve interactivity, such as replacing the basic display primitive triangle by
points and lines, or using multiresolution modelling techniques.

Multiresolution geometric models have proved to be a good solution for vi-
sualising objects made up of a vast number of polygons in interactive applica-
tions. These models adapt the geometric detail of the objects to the capacity of
present-day graphics systems. Using this technique, objects are represented by
means of multiple resolutions, with varying complexities, called levels-of-detail
(LoDs). The application can visualise the object using the most suitable LoD
and thus avoid, for instance, wasting time on visualising imperceptible details.
These models provide two possible solutions: levels of detail of uniform resolu-
tion and levels of detail of variable resolution. Multiresolution models do not
work properly with the representation of trees because of the characteristics of
their geometry [1]: the trunks are modelled by continuous meshes and a set of
isolated polygons is used for the foliage.

This paper presents a new hardware-oriented multiresolution approach to
represent the geometry of these vegetal species. Two different multiresolution
models are used to represent the tree objects: LodStrips [2] for the trunk and
branches, and Level of Detail Foliage LoDF [3] for the foliage. Both of them
have been designed within a hardware-oriented approach, thus considerably re-
ducing the visualisation time of the LoDs that are required. In order to adapt
the resolution of the different parts of the foliage depending on certain criteria,
the data structures and retrieval algorithms of LoDF has been both extended.
Finally, these models are compared with the ones used in [4] to represent trees,
the results showing how this approach reduces the extraction and visualisation
time even if hardware storage is not applied.

After reviewing previous work in section 2, the multiresolution model used to
represent the trunk and branches is set out in section 3. Next, section 4 includes
an analysis of the one used to represent the foliage. The data structure designed
for this model and the retrieval algorithms for a uniform and a variable level of
detail of the foliage are presented. Section 5 analyses the results of comparing
this new method against the one used in [4] and, finally, in section 6 some ideas
for future research are discussed.

2 Related Work

Research into real-time visualisation of detailed vegetal species is aimed at adapt-
ing the number of polygons used to represent those plants to the requirements
of graphics hardware. As it was said in the previous section, research into inter-
active visualisation of vegetal species can be grouped into two broad directions:
work that uses images or work that uses only geometry to represent the plants.

Image-based rendering. This is one of the commonest methods to represent
trees because of its simplicity. Impostors are the most popular example of
image-based rendering. This method replaces the geometry of the object with
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an image of it textured on a polygon immersed in the scene. Nevertheless, it
presents some disadvantages, such as, for example, the loss of realism when
the object is close to the viewer. Max [5] adds depth information to the
precalculated images. This information allows them to recalculate different
views from the stored images of the scene. Other authors obtain 2D images
from volumetric textures and combine them depending on the position of
the camera, [6]. Some authors, such as Remolar et al. [7], divide the scene
into zones depending on the distance from the object to the viewer. Objects
farther away from the camera are represented by an image and objects near
the viewer are depicted by geometry. Garćıa et al. [8] solve the parallax
problem by using textures that group sets of leaves.

Geometry-based rendering. This approach does not lose realism when the
viewer moves towards the model, but the number of polygons that form the
tree objects makes it necessary to use certain techniques to obtain interac-
tive visualisation. Most of the works published to date change the display
primitive for points or lines [9]. Works such as the ones presented by [1]
[10] allow us to interactively adapt the number of points depending on the
importance of the object in the final rendered image.
In recent years, several works based on multiresolution models have ap-
peared. Meyer et al. [11] and Lluch et al. [12] use a representation based on
multiresolution models of images. The only method so far that works with
multiresolution representation of the tree based exclusively on polygons is
[7], which the authors have called VDF. This work is focused on tree foliage.
It adapts the number of leaves that form the foliage in real time.

3 Trunk Representation

The trunk is represented by a continuous general mesh, where the polygons are
connected to each other. In our scheme, it is modelling using LodStrips. This
continuous multiresolution method noticeably improves on previous models, in
terms of storage and visualisation cost. The model is entirely based on optimised
hardware primitives, triangle strips, and manages the level of detail by perform-
ing fast strip updating operations. In addition, it uses stripification techniques
oriented towards exploiting vertex buffering.

4 Foliage Representation

Foliage is formed by isolated polygons that represent the leaves. In the presented
scheme, it is represented using the multiresolution model LoDF.

In general, a multiresolution representation is constructed from two main
elements: the original geometry of the object and the different approximations
given by a simplification method. LoDF is based on the Foliage Simplification
Algorithm (FSA) [13], which provides the coarsest approximation Fn−1 from the
original foliage F0. The basic simplification operation of this algorithm is leaf
collapse: two leaves are collapsed into a new one. This operation conditions a
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hierarchical structure based on trees. The sequence of leaf-collapse operations
is processed to build the new multiresolution representation F r (Figure 1 left).
The LoDF data organisation is a forest of binary trees, where the root-nodes are
the leaves that form Fn−1, the coarsest approximation, and the leaf-nodes are
the leaves of the original tree model, F0. In the example shown in Figure 1, F0
is formed by 9 leaves, and Fn−1 is made up of 3 leaves.

Fig. 1. Example of an F r structure and the data stored for clusters 0, 1 and 2

In the multiresolution model the inverse operation has been performed in
order to increase the level of detail, the refinement operation has been called leaf
split : one leaf is divided into the two leaves that formed it.

The main characteristic of F r is that the foliage is divided into independent
clusters. As each simplification operation creates a new leaf, each leaf can only
belong to one binary tree. Thus, every set of leaves in a binary tree of the data
organisation forms one cluster. Following with the previous example, Figure 1
(right) shows the three clusters representing it. These groups determine the data
structure used in our model.

4.1 Data Structure of the Foliage

The basic data structure of the LoDF model is an array of clusters (Figure 2).
Each cluster stores all the leaves that form a binary tree of the data organisation
F r and some additional information.

In order to make it possible to perform the leaf collapse or split operations
quickly, leaves li are stored in the clusters following the order of simplification
established by the FSA, i.e. by levels of proof in the binary tree. Furthermore,
leaves in each cluster are linked following the visualisation order: first of all the
leaves that form the original representation are linked and then the ones ob-
tained in the simplification process. These links also follow the order of creation
determined by the FSA. This step makes it possible to extract the leaves that
form the current LoD quickly. In Figure 2 the link of each leaf in the cluster is
represented by nj, j being the position of the leaf in the array.

In addition, some necessary data for leaves visualisation are also stored in
each cluster. These data are:
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Fig. 2. Example of data stored in clusters 0, 1 and 2 for the most detailed representation
(left) and the data stored after performing three leaf collapse operations (right)

– Init group: the position in the array of leaves where the first leaf of the
current LoD is stored.

– Active leaves : number of leaves to be visualised in the current approximation.

In order to extract the sequence of leaves that form the required LoD, we
must start traversing the group from the position indicated in the Init group.
The number of links that the algorithm must consider is the value stored in
Active leaves.

In addition to this structure, the multiresolution model also needs to store the
numbers of the clusters where every simplification operation that is processed to
obtain Fn−1 from F0 is performed. This data structure is called Changed groups.
Following the example of the data shown in Figure 2, the data stored in this
structure are represented in Figure 3.

Fig. 3. Left: Data obtained from the FSA. Right: Data stored in Changed groups.

The LoDF data organisation is well adapted to graphics hardware. The geo-
metric data of the model is initially stored in the graphics card. When a change
in the LoD is required by the application, the affected clusters are updated. The
only information that will be sent to the hardware are the leaves of these up-
dated clusters. The rest of the groups will remain in the graphics card without
undergoing any kind of modification, that is to say, just as they were before the
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change of LoD. Visualisation time is considerably reduced due to the fact that
only the information about the updated clusters is sent to the graphics card
instead of sending all the geometry of the foliage.

4.2 Rendering Algorithms for a Uniform LoD

In order to obtain a uniform resolution in the foliage, the leaf collapse operations
have to be performed in the order established by the FSA. This sequence has been
stored in the array Changed groups. Once the application where the foliage is
included establishes the number of leaves for the appropriate LoD, the extraction
algorithm determines the number of leaf split or collapse operations that have to
be performed in the foliage. Then, a pointer crosses the Changed groups array
and updates the Init group and the Active leaves fields in each cluster where an
operation has to be performed.

Due to the storing order of the leaves in the clusters, a leaf-collapse is simply
performed by increasing the Init group by two units, and a leaf-split by decreas-
ing this field by two units. These operations allow us to automatically update the
position where the extraction algorithm starts traversing the leaves of the group.
Figure 2 right shows how three leaf collapses affect the initial data, situated on
the left of the figure. According to the information stored in Changed groups,
two of them are performed in the 0 and one in the 1 clusters. The leaves to be
visualised are shaded.

Once the necessary operations have been processed, the visualisation process
begins. This algorithm starts traversing the group from the position indicated
in the Init group. It follows the links stored in the leaves to achieve the leaf
visualisation sequence. The number of links that the algorithm has to consider
is stored in Active leaves.

4.3 Rendering Algorithms for a Variable LoD

The main advantage of data organisation is that different clusters can be visu-
alised at different resolutions. This fact makes it possible to represent the foliage
with different detailed zones coexisting in the same representation. The applica-
tion assigns a certain number of leaves to represent the foliage of a tree and the
leaves that are visualised can be distributed following some specific criteria.

To retrieve a variable resolution LoD, a criterion or a set of criteria is needed.
These criteria decide which part of the object is to be simplified and which part
is to be refined. They depend on the final application where the multiresolution
object is to be included. In the case of LoDF, a criterion has been implemented
in order to determine the most detailed zone. This criterion is the distance to the
viewer. Clusters situated near the camera require more detail than those farther
away from it. The function MostDetailedZone calculates the appropriate number
of leaves in the cluster depending on this criterion. This function evaluates each
cluster and returns the appropriate number of leaves in each one following a linear
function. Figure 4 shows two trees where part of their foliage is less detailed than
the rest.
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The number of leaves to visualise allows us to know the number of leaf collapse
or split operations that have to be performed in the clusters: if the number of
leaves to be visualised in the required LoD is higher than the number of leaves
currently being visualised, then some leaf split operations have to be performed.
In the other case, if the new LoD requires less leaves than the one currently
being visualised, the algorithm has to perform the appropriate number of leaf
collapses. This information is used to obtain the Init position in the leaf array
of the cluster. The number of links to be traversed is the number of leaves that
we want to visualise, which is returned by the function MostDetailedZone and
stored in the Active leaves field of the cluster.

Nevertheless, more criteria can easily be added to LoDF if the application
makes it necessary to do so.

Fig. 4. Example of variable resolution according to the implemented criterion. A part
of the tree is more detailed than other.

5 Results

All the tests used here were implemented in C++ with OpenGL as the graphics
library. The trees used in our study was modelled with the Xfrog application [14].
The trunks are made up of 34.202 and the foliages consist of another 95.679.

The method is compared with the one presented by Remolar et al. [7], that
is, VDF+MOM. In order to achieve a better comparison, the tests designed for
use here were performed on a computer with the same characteristics as the one
used in that work.

The multiresolution methods VDF+MOM are not hardware-oriented, so
first of all they were compared with the methods presented in this paper,
LoDF+LodStrip but without taking advantage of the graphics hardware. In other
words, all the geometric data about the LoDF+LodStrip models are stored in
the main memory in the same conditions as the data in VDF+MOM. Two tests
were designed in this case: one for uniform changes in the LoD and other one
for variable changes. Results are shown in Figure 5.

The tests we carried out consist in traversing different LoDs. In all of them,
the LoD varies between 0 and 1, 0 being the most detailed approximation and
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Fig. 5. Results obtained on comparing VDF+MOM with LoDF+Lodstrip
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1 the least. The tests were designed following the criterion defined in the mul-
tiresolution models. Two graphs are offered in every figure to show the results:

Total time. Time that the model spends on extracting and also visualising
each level of detail.

Extraction time. Time that the model uses to extract the geometry required
to change from one approximation to other one.

In the figures it can be seen that our method reduces the total time consid-
erably. Using LoDF+LodStrip trees can be visualised quite a lot faster than by
using VDF+MOM. Finally, the main advantage of representing a tree using the
methods LoDF+LodStrip methods is that multiresolution models are graphics
hardware oriented. Other tests have been carried out in order to evaluate this
characteristic. The same experiments were conducted on a computer with an
NVIDIA GeForce 6800 Series GPU. In this case, Figure 6 shows how the total
and extraction time for visualising a tree can be reduced by using this property.

A video showing the visualisation of a forest can be obtained from the web
page http://graficos.uji.es/rebollo/demo.html.

6 Conclusions and Future Work

In this article we have presented a new multiresolution approach that exploits the
characteristics of current graphics hardware. The models Level of Detail Foliage
LoDF and LodStrip allow us to change the level of detail of a tree representation
in a continuous way. The main advantage is that they reduce the traffic of data
through the AGP/PCIe bus by diminishing the amount of information that is
sent to it when a change in level of detail is produced. In the case of LoDF,
this is obtained by grouping leaves in independent clusters and only modifying
a small set of data.

Both methods are combined in the multiresolution scheme that is presented in
order to make it feasible to represent scenes of forest in interactive applications.
It allows us to render every detail of the tree even when the viewer is extremely
close to it. Because it is adapted to the graphics hardware, it produces better
results than current models based on images or points.

One line of research we are currently working on is to obtain advanced illu-
mination effects and animation of the foliage. One of our aims in these studies
is to continue to take advantage of graphics hardware programming.
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