A Clustering Framework for Real-Time
Rendering of Tree Foliage

C. Rebollo, I. Remolar, M. Chover, J. Gumbau, O. Ripollés
Departamento Lenguajes y Sistemas Informaticos
Universitat Jaume I, 12071 Castellon, Spain
Email: {rebollo,remolar,chover,gumbau,oripolle } @uji.es

Abstract— Real-time rendering of vegetation is currently a
problem in need of a solution. The lack of plants and trees
reduces the realism of outdoor scenes. The large number
of polygons that form this kind of objects implies that
current hardware cannot achieve interactive rendering of
outdoor scenes. This paper deals with this problem and it
presents a multiresolution scheme that allows us to represent
the whole geometry of the trees and forests using both
uniform and variable levels of detail. The method presented
here models the trees using two multiresolution approaches,
due to the different characteristics of the geometry that
forms them. The trunk is modelled with a solution oriented
towards representing continuous meshes, and the foliage
is modelled with the multiresolution model Level of Detail
Foliage, presented in a previous work. Both of them have
been designed to take advantage of the graphics hardware by
adapting the data structures and the rendering algorithms to
make the visualisation time efficient. The main characteristic
of Level of Detail Foliage is the fact that it classifies the
leaves that form the foliage in independent clusters in order
to improve the visualisation time. In this paper, it has
been efficiently implemented and extended to allow us to
change the level of detail in a variable manner, by adapting
the resolution of the crown of the tree to certain criteria
determined by the application.

Index Terms— real-time rendering, clustering of leaves, tree
representation, multiresolution, hardware graphics, level of
detail.

I. INTRODUCTION

Interactive applications currently developed are usually
set in outdoor scenes. In these environments, trees and
plants are necessary to make the scenes more similar to
the real world. Many works on modelling vegetal species
have appeared up to now, being possible to obtain very
realistic tree models. However, the problem arises when
real-time rendering is required by the application, as the
more realistic the vegetation objects are, the greater the
number of polygons they contain. Figure 1 shows an
example of a tree generated by one of the most used
commercial application, Xfrog [1]. It can be appreciated
how the representations obtained can be highly realistic.

This paper is based on “Hardware-Oriented Visualisation of Trees”
by C. Rebollo, I. Remolar, M. Chover, J. Gumbau, which appeared
in the Proceedings of the 21st International Symposium on Computer
and Information Sciences (ISCIS), Istanbul, Turkey, November 2006.
© 2006 ISCIS.

This work was supported by the Spanish Ministry of Science and
Technology (TIN2004-07451-C03-03 and FIT-350101-2004-15), the Eu-
ropean Union (IST-2-004363) and FEDER funds.

Figure 1. Tree Quercus Suber modelled using Xfrog. 20.281 leaves.

Depending on the technique used to solve this prob-
lem, methods can be divided into two important groups:
image-based and geometry-based rendering. The model
presented in this paper is categorized within the second
group. Geometric representation has many advantages,
the most important of which is that trees do not lose
realism even when the camera is extremely close to the
object. Another important advantage is that geometry
can be stored either in the main memory or directly
in the graphics card, thus taking advantage of current
graphics hardware. Moreover, using geometry to repre-
sent objects makes it possible to obtain shadows and
different lighting effects, as well as greater acceleration in
rendering. Geometry-based approaches have used several
techniques to achieve interactivity, such as replacing the
basic display primitive (triangles) by points and lines, or
using multiresolution modelling techniques.

Geometric models which apply multiresolution tech-
niques have proven to be a good solution for visualising
objects made up of a vast number of polygons in real-
time applications. These models adapt the geometric
detail of the objects to the capacity of graphics systems.
Using this technique, objects are represented by means
of multiple resolutions, with varying complexities, called
levels-of-detail (LoDs). The application can visualise the
object using the most suitable LoD and therefore avoid,
for instance, wasting time on visualising imperceptible

details. Multiresolution models can provide levels of
detail of uniform resolution or levels of detail of variable
resolution.

General level-of-detail models do not work properly
with the representation of trees because of the character-
istics of their geometry [2]. They can be easily applied to
the trunks, as they are modelled as continuous meshes,
but are not suitable for the set of isolated polygons
which is used for the foliage. This paper presents a new
hardware-oriented multiresolution approach to represent
the geometry of these vegetal species. Two different mul-
tiresolution models are used to represent the tree objects:
LodStrips [3] for the trunk and branches, and Level of
Detail Foliage LoDF [4] for the foliage. Both of them
have been designed within a hardware-oriented approach,
thus considerably reducing the visualisation time of the
LoDs that are required. In order to adapt the resolution
of the different parts of the foliage depending on certain
criteria, the data structures and retrieval algorithms of
LoDF have been both extended. Finally, these models
are compared to the ones used in [5] to represent trees,
showing how this approach reduces the extraction and
visualisation time even when hardware storage is not
applied.

This paper presents the following structure. After re-
viewing previous work in section II, the multiresolution
model used to represent the trunk and branches is set
out in section III. Next, section IV analyses the solution
proposed to represent the foliage. The data structure
designed for this model and the retrieval algorithms for
uniform and variable levels of detail of the foliage are
presented. In section V, the forest representations are
discussed. Section VI offers the results of comparing this
new method against the one used in [5] and, finally, in
Section VII some ideas for future research are outlined.

II. RELATED WORK

Extensive research has been carried out to offer real-
time visualisation of detailed vegetal species, adapting the
number of polygons used to represent those plants to the
requirements of graphics hardware. As it was said in the
previous section, research into interactive visualisation of
vegetal species can be grouped into two broad directions:
works that use images or works that use only geometry
to represent the plants.

o Image-based rendering. This is one of the com-
monest methods to represent trees because of its sim-
plicity. Impostors [6] are the most popular example
of image-based rendering. This method replaces the
geometry of the object with an image of it textured
on a polygon immersed in the scene. Nevertheless,
it presents some disadvantages, such as, for exam-
ple, the loss of realism when the object is close
to the viewer. Max [7] adds depth information to
the precalculated images. This information allows
them to recalculate different views from the stored
images of the scene. Other authors [8] [9] obtain
2D images from volumetric textures and combine

them depending on the position of the camera. Some
works, such as Shade et al. [10] and Remolar et
al. [11], divide the scene into zones depending on
the distance from the object to the viewer. Objects
farther away from the camera are represented by
an image and objects near the viewer are depicted
by geometry. Garcia et al. [12] solve the parallax
problem by using textures that group sets of leaves.
Since 2005, some works have appeared that represent
the tree using billboard clouds, as those presented
by Behrendt et al. [13], Fuhrmann et al. [14] and
Lacewell et al. [15].

+ Geometry-based rendering. This approach does not

lose realism when the viewer moves towards the
model, but the number of polygons that form the tree
objects makes it necessary to use certain techniques
to obtain interactive visualisation. Most of the works
published to date change the display primitive for
points or lines [16] [17] [18]. Works such as the ones
presented by [2] [19] allow us to interactively adapt
the number of points depending on the importance
of the object in the final rendered image.
In recent years, several works based on multires-
olution models have appeared. Meyer et al. [20]
and Lluch et al. [21] use a representation based on
multiresolution models of images. Remolar et al.
[11] presents a multiresolution representation of the
tree based exclusively on isolated polygons. Authors
have called this representation VDF. It is focused
on tree foliage and it adapts the number of leaves
that form the foliage in real time. Rebollo et al. [4]
[22] improve this representation adapting the data
structures to the graphics hardware.

III. TRUNK REPRESENTATION

The trunk and the branches are represented by a con-
tinuous mesh, where the polygons are connected to each
other. In our scheme, they are modelled using LodStrips
[3]. Every multiresolution model needs a simplification
algorithm to obtain the sequence of operations that will
enable a progressive refinement of the original mesh.
In this case, the selected algorithm will be QSlim [23],
which uses the vertex collapse as its simplification oper-
ation. LodStrips is entirely based on optimised hardware
primitives, triangle strips. This drawing primitive offers
an efficient representation of the connectivity of a mesh
and reduces the amount of information that is sent to the
hardware, thus resulting in an improvement of the perfor-
mance. LodStrips uses this primitive for both storing and
rendering the model, and manages the level of detail by
performing fast strip updating operations. This continuous
approach noticeably improves on previous models, in
terms of storage and visualisation cost. The basic data
structure of this model is composed of three elements:

o A set of multiresolution strips.
e An array of vertices, which store a pointer to the
vertex they are collapsed to.

e A structure to store all the information related to
know how to update the strips to reflect a LOD
change.

The main characteristics of LodStrips that have encour-
aged its selection as a continuous multiresolution model
for the trunk are:

« Smooth transitions between levels of detail, avoiding
visual artifacts.

o Exploitation of mesh connectivity by means of trian-
gle strips, resulting in less storage needs and a faster
rendering.

o A fast level of detail extraction routine, which is key
for an efficient multiresolution model.

IV. FOLIAGE REPRESENTATION

The common representation of foliage is based on iso-
lated polygons that represent the leaves. In the presented
scheme, it is represented using the multiresolution model
LoDF. The main properties of LoDF can be summarized
in:

« The foliage is divided into independent clusters.

« Itis based on the Foliage Simplification Method [24].

o It allows us to manage only a subset of the leaves
that form the multiresolution model.

« Different levels of detail can be visualised in real-
time, with an uniform or variable resolution.

o The model takes advantage of the graphics hardware
in order to reduce the extraction and visualisation
time of a level of detail.

o LoDF stores appearance attributes.

A multiresolution representation is generally con-
structed from two main elements: the original geometry
of the object and the different approximations given by
a simplification method. LoDF is based on the Foliage
Simplification Algorithm (FSA) [24], which provides the
coarsest approximation Fj,_; from the original foliage
Fy. The basic simplification operation of this algorithm
is leaf collapse: two leaves are collapsed into a new one.
In the multiresolution model the inverse operation has
been performed in order to increase the level of detail.
The refinement operation has been called leaf split: one
leaf is divided into the two leaves that formed it. These
operations condition a hierarchical structure based on
trees, as shown in Figure 2. The sequence of leaf-collapse
operations obtained from FSA is processed to build the
new multiresolution representation " (Figure 3).

The LoDF data organisation is a forest of binary trees,
where the root-nodes are the leaves that form F,,_;, the
coarsest approximation, and the leaf-nodes are the leaves
of the original tree model, Fy. In the example, F{ is
formed by 9 leaves, and F),_1 is made up of 3 leaves.

Let F' and F" be the original and the LoDF represen-
tation. They can be defined as:

F={V,L} (1
= (VL) 0)

l

v, <
split collapse «— / \

VI l: lt lu
/ + Yy

V2

Figure 2. Example of a collapse and split operations and the resultant
hierarchical structure.

F, 1 113 114 lIZ

n-.

Figure 3. Example of an F'" structure.

being V' and L the set of vertices and leaves forming
the original object, and V" y L" the set of vertices and
leaves that represent all the different levels of detail stored
in the multiresolution structure F".

Regarding the vertices and the leaves of the object, it
can be said that the most detailed representation Fj is
formed by the original vertices and the leaves

V=W 3
L = Ly “

Due to the characteristics of the simplification method
FSA, no new vertices are added to the multiresolution
structure in order to represent the different levels of detail
F;. Then, it can be said that F'" is formed by:

V=V, (5)
n—2

L"=LoUlhU..Ulha=Ly U |Jlin>1 (6
i=0

where [; is the leaf included in F; in order to represent
the Fjy; approximation.

The main characteristic of F" is that the foliage is
divided into independent clusters. As each simplification

operation creates a new leaf, each leaf can only belong
to one binary tree. This way, every set of leaves in a
binary tree of the data organisation forms one cluster.
Following with the previous example, Figure 4 shows the
three clusters representing it. These groups determine the
data structure used in our model.

113 114 IIZ
£ oL £ AN
Ly | L L1 L) 1
A A |
l9 lZ 15 16
7\ ¥
lﬂ llI
e Gowl T G2

Figure 4. Data stored in clusters 0, 1 and 2 for the data structure shown
in Figure 3.

A. Data Structure of the Foliage

The basic data structures of the LoDF model are shown
next. In order to improve the visualisation time, some data
are stored in the Graphics Process Unit, GPU. These data
structure are:

struct Vertex {
float coord; };

struct GroupHw {
int vertices; };

struct Visualised_leaf {
GroupHw *Groups; };

The rest of the data are stored in the Central Process
Unit, CPU. They are:

struct Leaf {
int vertices[4]; };
struct List {
int leaf_number;
int next; };
struct Group {
int Init_group;
int Active_leaves;
struct List *Leaves; };
struct GroupLeaf {
struct Group *Groups; };
struct Changed_group {
int Group_number; };
struct LoDF {
Vertex *Vertices;
Leaf *Leaves;
GroupLeaf *GroupLeaves;
Changed_group *Changed_groups;
Visualised_leaf *Visualised_leaves; };

The main data structure is an array of clusters, called
GroupLeaves (Figure 5). Each cluster stores all the leaves
that form a binary tree of the data organisation F,
Leaves, and some additional information.

Init_group 0 0 0
Active_leaves 4 3 2
leaf number |next I| ny I; | ny I; | ny
I n, I | n I |y
Ln ULE Lyn,
Iy | g 1| n,
L|n, Ly n,;
Iy ng
L n,

Figure 5. Example of data stored in clusters 0, 1 and 2 for the most
detailed representation.

Regarding the stored leaves, each [; is stored in the
clusters following the order of simplification established
by the FSA, i.e. by levels of depth in the binary tree.
This storing order makes it possible to perform the leaf
collapse or split operations quickly. Furthermore, leaves in
each cluster are linked following the visualisation order:
first of all the leaves that form the original representation
are linked and then the ones obtained in the simplification
process. These links also follow the order of creation
determined by the FSA. This step makes it possible to
extract the leaves that form the current LoD in a very
short time. In Figure 5 the link of each leaf in the cluster
is represented by n;, j being the position of the leaf in
the array.

In addition, some necessary data for leaves visualisation
are also stored in each cluster. These data are:

o Init_group: the position in the array of leaves where

the first leaf of the current LoD is stored.

o Active_leaves: number of leaves to be visualised in

the current approximation.

In order to extract the sequence of leaves that form
the required LoD, we must start traversing the group
from the position indicated in the Init_group. The number
of links that the algorithm must consider is the value
stored in Active_leaves. Apart from this structure, the
multiresolution model also needs to store the numbers
of the clusters where every simplification operation that
is processed to obtain F,_; from F{ is performed. This
data structure is called Changed_groups. Following the
example of the data shown in Figure 5, the data stored in
this structure are represented in Figure 6.

The LoDF data organisation is well adapted to graph-
ics hardware. First of all, the geometric information of
the vertices is stored in the graphics card. Besides, the
structure Visualised_leaves is also stored in the GPU. This
structure stores the vertices that form the visualised leaves
of each cluster in a determined level of detail. It is divided

Lojar | Loaz | luew 8T
1, I, i 0
L L Ly 0
I I L, |—»| 1
L, Ly Iy, 2
L Ly Iy 0
L L, 1, 1

Figure 6. Left: Data obtained from the FSA. Right: Data stored in
Changed_groups.

in the groups that represent the foliage organization. Each
cluster sequentially contains the four indices that represent
the leaves in the visualised level of detail. When a change
in the LoD is required by the application, the affected
clusters are updated in the CPU. The only data that will
be sent to the hardware are the leaves of these updated
clusters. The rest of the groups will remain in the graphics
card without undergoing any kind of modification, that
is to say, just as they were before the change of LoD.
Visualisation time is considerably reduced due to the fact
that only the information about the updated clusters is sent
to the graphics card instead of sending all the geometry
of the foliage.

A comparison of the visualisation process between
no hardware-oriented and hardware-oriented implemen-
tations is shown in Figure 7.

Changing LOD

No Hardware Oriented Hardware Orientea\'\‘

: 1 [1
: ! 7 R Groups ——mwl
! 1 1! 1
[A N %

-
{CPU wmems FiEis :
1 I Leaves ! ;
: L — 1-_ -1 ! 1
‘! r _/eTtices_ i 1
i L :
| ;
F" 1
: i
i Yisualised leaves !
' GPU - ;
i 1
! \r’emces-! i
: T R | 3
¥
Visualisation ~——
Figure 7. Example of the data transfer comparison between no

Hardware-Oriented and Hardware-Oriented representation.

B. Rendering Algorithms for a Uniform LoD

The level of detail of a tree situated far from the
observer does not generally require zones with more
resolution than others. In this case, the level of detail
has to increase in a uniform manner as it increases its
importance within the scene.

In the presented multiresolution model, the defined
criterion that determines the interest of the tree in the
scene is its distance to the camera. This criterion has been
implemented in the function UniformLoD. It decides the
number of leaves to visualise in the foliage. In order to
obtain a good management of the scene, two distances
have been established:

¢ Minimum distance Dj,;;n . If the tree is closer
to the viewer than this distance, the foliage is full
detailed represented.

o Maximum distance D, 4 x. The foliage of the tree
is represented its coarsest approximation when it is
further than this distance.

In the case of a tree situated between D 7y and Dasax,
the number of the visualised leaves increases or dimin-
ishes in a lineal way at the same time as the distance does.
The proposed pseudo-code of the function UniformLoD
is shown in Algorithm 1.

Function UniformLoD (foliage,camera) : return (n_leaves)
dist = Distance (foliage,camera);
if (dist > D-MAX) then // Too far
n_leaves = N_LEAVES_MIN;
else
if (dist < D_.MIN) then // Very close
n_leaves = N_.LEAVES_MAX;
else // It is situated in the intermediate zone
int_dist = D_.MAX - D_MIN;
int_leaves = N_LEAVES_MAX - N_LEAVES _MIN;
n_leaves = Calculate_Leaves(dist,int_dist,int_leaves);
end if
end if
end Function

Algorithm 1. Algorithm for the function UniformLOD.

Once the application where the foliage is included
establishes the number of leaves for the appropriate LoD,
the extraction algorithm determines the number of leaf
split or collapse operations that must be performed in the
foliage. In order to obtain a uniform resolution in the
foliage, the leaf collapse operations have to be performed
in the order established by the FSA. This sequence has
been stored in the array Changed_groups. Then, a pointer,
index, crosses the Changed_groups array and updates the
Init_group and the Active_leaves fields in each cluster
where an operation has to be performed.

Due to the storing order of the leaves in the clusters,
a leaf-collapse is simply performed by increasing the
Init_group by two units, and a leaf-split by decreasing
this field by two units. These operations allow us to
automatically update the position where the extraction
algorithm starts traversing the leaves of the group. The
pseudo-code of the algorithm designed in this case to

extract the data to visualize one is presented in Algorithm
2.

Init_group 4 2 0
Active_leaves 2 2 2
leaf_ number |next Iy| ny I | ny I; | ny
L|n I | my I;|ny
L n, L|n, Lyjn,
iy \n; Ly n,
;| ny Iy n,
Ly ng
Ln,

Figure 8. Example of data stored after performing three leaf collapse
operations.

n_collapse = 0; n_split = O;
// Obtaining the number of leaves to visualise
n_leaves = UniformLoD (foliage, camera);

// Obtaining the number of operations to perform

if (n_leaves < n_actual_leaves)
// New approximation requires less leaves than old one
n_collapse = (n_actual leaves—n_leaves);

else
// New approximation requires more leaves than old one
n_split = (n_leaves—n_actual_leaves);

// Performing collapse operations

while (n_collapse > 0) do
// Obtaining the cluster affected number
gr = Cluster_Number(index, Changed_groups);
// Updating the cluster
Group|[gr].Init_group = Group|[gr].Init_group + 2;
Group|gr].Active_leaves —;
index ++; n_collapse —;

end while

// Performing split operations

while (n_split > 0) do
// Obtaining the cluster affected number
gr = Cluster_Number(index, Changed_groups);
// Updating the cluster
Group|gr].Init_group = Group|[gr].Init_group - 2;
Group|gr].Active_leaves ++;
index - -; n_split - -;

end while

Algorithm 2. Algorithm for uniform LOD extraction.

Figure 8 shows how three leaf collapses affect the initial
data, situated on the left of the figure. According to the
information stored in Changed_groups, two collapses are
performed in the O and one in the 1 clusters. The leaves to
be visualised are shaded. When the necessary operations
have been processed, the visualisation step begins. This
algorithm starts traversing the group from the position
indicated in the Init_group. It follows the links stored
in the leaves to achieve the leaf visualisation sequence.

The number of links that the algorithm has to consider
is stored in Active_leaves. The proposed pseudo-code for
the visualisation process is shown in Algorithm 3.

C. Rendering Algorithms for a Variable LoD

The data organisation presented before has an important
advantage: different clusters can be visualised at different
resolutions. This fact makes it possible to represent the
foliage with different detailed zones coexisting in the
same representation. The application assigns a certain
number of leaves to represent the foliage and the leaves
that are visualised can be distributed following some
specific criteria.

gr=0;
// For all the groups
while (gr <= NUMBER_GROUPS) do
// Obtaining the data of the affected group
first_leat = Group|gr].Init_group;
number_of_leaves = Group[gr].Active_leaves;
// Starting the visualisation process
while (number_of_leaves > 0) do
Drawleaf(Group[gr].List[visualise_hoja].leaf_number);
first_leaf = Group|gr].List[first_leaf].next;
number_of_leaves - -;
end while
gr++;
end while

Algorithm 3. Algorithm for uniform LOD rendering.

A variable resolution LoD requires some specific cri-
teria. These criteria decide which part of the object is
to be simplified and which part is to be refined. They
depend on the final application where the multiresolution
object is to be included. In the case of LoDF, the distance
to the viewer criterion has been implemented in order to
determine the most detailed zone. Clusters situated near
the camera require more detail than those farther away
from it. The function MostDetailedZone calculates the
appropriate number of leaves in the cluster depending on
this criterion. This function evaluates each cluster and
returns the appropriate number of leaves in each one
following a linear function. Algotihm 4 offers a pseudo-
code version of the extraction process.

The number of leaves to visualise allows us to know
the number of leaf collapses or splits operations that have
to be performed in the clusters. If the number of leaves
to be visualised in the required LoD is higher than the
number of leaves currently being visualised, then some
leaf split operations have to be performed. In the other
case, if the new LoD requires less leaves than the one
currently being visualised, the algorithm has to perform
the appropriate number of leaf collapses. This information
is used to obtain the Init_position in the leaf array of
the cluster. The number of links to be traversed is the
number of leaves that we want to visualise, which is
returned by the function MostDetailedZone and stored in
the Active_leaves field of the cluster. Nevertheless, more

criteria can easily be added to LoDF if the application
makes it necessary to do so. Figure 9 shows two trees
where part of their foliage is less detailed than the rest.

For each_affected_group gr
// Obtaining the number of leaves to visualise
n_leaves = MostDetailedZone (gr, camera);

// Obtaining the number of operations to perform
if (n_leaves[gr] < Group[gr].Active_leaves)
// New approximation requires less leaves than old one
n_collapse = (Group[gr].Active_leaves—n_leaves[gr]);
// Updating the cluster
Group|gr].Init_group = Group|gr].Init_group + 2 * n_col;
else
// New approximation requires more leaves than old one
n_split= (n_leaves+Group|[gr].Active_leaves);
// Updating the cluster
Group|gr].Init_group = Group|[gr].Init_group - 2 * n_split;
end if

// Updating the number of leaves in the cluster
Group|gr].Active_leaves = n_leaves|[[gr];
end for

Algorithm 4. Algorithm for variable LOD extraction.

Figure 9. Example of variable resolution according to the implemented
criterion. Some parts of the tree is more detailed than others.

V. FOREST VISUALISATION

It is usual to find in natural environments forests where
a specific species of tree predominates. Using instantia-
tion as a technique to visualise forests in real-time takes
advantage of this fact. Then, each tree in the forest is
represented as an instance of one species.

Each instance stores in the GPU a vector Visu-
alised_leaves with the leaves that represent the current
approximation. Besides, the only information that has
to be stored for each cluster are the fields Init_group
and Active_leaves, as well as a pointer that indicates
the number of collapse operations performed in the data
structure Changed_groups. This information is necessary
to efficiently extract the geometry that visualises each in-
stance. Figure 10 graphically shows the data organization
to represent three instances of the same foliage.

Figure 10. Data organization for visualising three instances of the same
foliage.

Figure 12 shows a fully detailed forest. It is formed
by 100 instances of 8 different species. The scene is
represented using more than 15 millions of polygons.
Figure 13 represents the same forest reducing the number
of polygons in 40%. The visual appearance is similar
in both Figures. Finally, Figure 14 makes a comparison
between Figure 12 and Figure 13. The pixels that are
different in both figures are marked, showing how the
quality obtained with our solution is very high.

VI. RESULTS

All the tests presented in this section were implemented
in C++ with OpenGL as the graphics library and were
conducted on a computer with an NVIDIA GeForce 6800
Series GPU.

Figure 11. Tree Taxus Baccata modelled using Xfrog. The trunk is
made up of 34.202 polygons and the foliage consist of 96.320 (48.160
leaves).

The tests we carried out consist in traversing different
LoDs of the tree shown in Figure 11. Throughout the tests,
the LoD varies between 0 and 1, 0 being the most detailed
approximation and 1 the least. The tests were designed
following the criterion defined in the multiresolution

models. Two graphs are offered in every figure to show
the results:

« Total time. Time that the model spends on extracting
and also visualising each level of detail.

« Extraction time. Time that the model uses to extract
the geometry required to change from one approxi-
mation to another one.

The method is compared with the one presented by
Remolar et al. [11]. This method combined VDF for
the foliage and MOM [25] for the trunks. In order to
achieve a better comparison, the tests were performed
on a computer with the same characteristics as the
one used in that work. As the multiresolution methods
VDF+MOM are not hardware-oriented, first of all they
were compared with the methods presented in this paper,
LoDF+LodStrip, but without taking advantage of the
graphics hardware. In other words, all the geometric
data about the LoDF+LodStrip models are stored in the
main memory in the same conditions as the data in
VDF+MOM. Two tests were designed in this case: one
for uniform changes in the LoD and other one for variable
changes. Results are shown in Figure 15. In the figures
it can be seen that our method considerably reduces the
total time. Using LoDF+LodStrip, trees can be visualised
quite a lot faster than when using VDF+MOM.

Finally, as the main advantage of representing a tree
using our method is that multiresolution models are
graphics hardware oriented, other tests have been carried
out. In this case, Figure 16 shows how the total and
extraction time for visualising a tree can be reduced by
using this property.

Moreover, the storage cost has also been considered.
Table I summarizes different characteristic of the trees
used in the experiments: the number of vertices, polygons
and leaves of the original model, and their original
storage cost (in megabytes). Tables II and III show the
characteristics and storage costs of the VDF and LoDF
(no Hardware-Oriented) representations, respectively. In
these tables, it can be seen the number of the stored
approximations, n, the number of leaves (the number of
vertices is the same as the original representation) and
their storage costs. In the case of the LoDF (no Hardware-
Oriented) representation, it is indicated the number of
clusters that form the foliage. A VDF representation
is 1.62 times the original model, while a LoDF (no
Hardware-Oriented) representation is only 1.24 times,
which is a reduction of nearly a 25%.

Tables IV and V respectively show the characteristics
and storage costs of the LoDF (no Hardware-Oriented)
and LoDF (Hardware-Oriented) representations. It can be
appreciated how the LoDF (Hardware-Oriented) repre-
sentation is 1.49 times the original model and a LoDF
(no Hardware-Oriented) representation is 1.24 times. This
increase is justified due to the reduction of visualization
time of the approximation.

VII. CONCLUSIONS AND FUTURE WORK

This article presents a new multiresolution approach
for foliage that exploits the characteristics of current
graphics hardware. The model Level of Detail Foliage
LoDF, combined with LodStrip, allow us to change the
level of detail of a tree representation in a continuous
way. The main advantage is that they reduce the traffic
of data through the AGP/PCle bus by diminishing the
amount of information that is sent when a change in
level of detail is produced. With respect to LoDF, this is
obtained by grouping leaves in independent clusters and
only modifying a small set of data. Furthermore, LoDF is
also capable of offering variable resolutions of the crown
of the trees.

These two methods are combined in the multiresolution
scheme that is presented in order to make it feasible to
represent detailed scenes of forest in interactive appli-
cations. It allows us to render every detail of the tree
even when the viewer is extremely close to it. Because
it is adapted to the graphics hardware, it produces better
results than current models based on images or points.

One line of research we are currently working on is to
obtain advanced illumination effects and animation of the
foliage. One of our aims in these studies is to continue
to take advantage of graphics hardware programming.

ACKNOWLEDGMENTS

This work was supported by the Spanish Ministry
of Science and Technology (TIN2004-07451-C03-03
and FIT-350101-2004-15), the European Union (IST-2-
004363) and FEDER funds.

REFERENCES

[1] “Greenworks: Organic software,”
http://www.greenworks.de/, 2005.

[2] O. Deussen, C. Colditz, M. Stamminger, and G. Drettakis,
“Interactive visualization of complex plant ecosystems,” in
VIS '02: Proceedings of the 13rd Conference on Visual-
ization. 1EEE Computer Society, 2002, pp. 219-226.

[3] J. F. Ramos and M. Chover, “Lodstrips: Level of detail
strips,” in International Conference on Computational Sci-
ence, 2004, pp. 107-114.

[4] C. Rebollo, I. Remolar, M. Chover, and O. Ripolls, “An
efficient continuous level of detail model for foliage,”
WSCG ’06: Proceedings of 14th International Conference
in Central Europe on Computer Graphics, Visualization
and Computer Vision, pp. 335-342, 2006.

[5] 1. Remolar, C. Rebollo, M. Chover, and J. Ribelles, “Real
time tree rendering,” in Lecture Notes in Computational
Science 3039, 2004, pp. 173-180.

[6] P. Maciel and P. Shirley, “Visual navigation of large
environments using textured clusters,” in SI3D ’95: Pro-
ceedings of the Symposium on Interactive 3D graphics,
1995.

[7] N. Max, “Hierarchical rendering of trees from precom-
puted multi-layer z-buffers,” in Rendering Techniques *96:
Proceedings of the 7th Eurographics Workshop, X. Pueyo
and P. Schrder, Eds. Springer-Verlag, 1996, pp. 165-174.

[8] P. Decaudin and F. Neyret, “Rendering forest scenes in
real-time,” in Rendering Techniques ’04: Proceedings of
the 15th Eurographics Workshop, 2004, pp. 93-102.

[9] A. Reche, 1. Martin, and G. Drettakis, “Volumetric re-
construction and interactive rendering of trees from pho-
tographs,” ACM Transactions on Graphics, SIGGRAPH
Conference Proceedings, vol. 23, no. 3, pp. 720-727, 2004.

[10] J. Shade, D. Lischinski, D. H. Salesin, T. DeRose, and
J. Snyder, “Hierarchical image caching for accelerated
walkthroughs of complex environments,” in SIGGRAPH
'96: Proceedings of the 23rd Annual Conference on Com-

puter Graphics and Interactive Techniques. ACM Press,
1996, pp. 75-82.
[11] I. Remolar, M. Chover, J. Ribelles, and O. Bel-

monte, “View-dependent multiresolution model for fo-
liage,” WSCG °03: Proceedings of 11st International Con-
ference in Central Europe on Computer Graphics, Visual-
ization and Computer Vision, vol. 11, no. 2, pp. 370-378,
2003.

[12] 1. Garcia, M. Sbert, and L. Szirmay-Kalos, “Leaf cluster
impostors for tree rendering with parallax,” in Rendering
Techniques '05: Proceedings of the 16th Eurographics,
Short Presentations, 2005.

[13] S. Behrendt, C. Colditz, O. Franzke, J. Kopf, and
O. Deussen, “Realistic real-time rendering of land-
scapes using billboard clouds,” Computer Graphics Forum,
vol. 24, no. 3, pp. 507-516, 2005.

[14] A. Fuhrmann, E. Umlauf, and S. Mantler, “Extreme model
simplification for forest rendering,” in Natural Phenomena
'05. Eurographics Workshop on Natural Phenomena, 2005,
pp. 57-66.

[15] J. Lacewell, D. Edwards, P. Shirley, and W. Thompson,
“Stochastic billboard clouds for interactive foliage render-
ing,” Journal of Graphics Tools, vol. 11, no. 1, pp. 1-12,
2006.

[16] W. Reeves and R. Blau, “Approximate and probabilistic
algorithms for shading and rendering structured particle
systems,” in SIGGRAPH ’85: Proceedings of the 12th
Annual Conference on Computer Graphics and Interactive
Techniques. ACM Press, 1985, pp. 313-322.

[17] J. Weber and J. Penn, “Creation and rendering of realistic
trees,” in SIGGRAPH '95: Proceedings of the 22nd Annual
Conference on Computer Graphics and Interactive Tech-
niques, R. Cook, Ed. ACM Press, 1995, pp. 119-128.

[18] M. Stamminger and G. Drettakis, “Interactive sampling
and rendering for complex and procedural geometry,” in
Rendering Techniques '01: Proceedings of the 12nd Eu-
rographics Workshop, S.Gortler and C.Myszkowski, Eds.
Springer-Verlag, 2001, pp. 151-162.

[19] G. Gilet, A. Meyer, and F. Neyret, “Point-based rendering
of trees,” in Natural Phenomena ’05. Eurographics Work-
shop on Natural Phenomena, P. P. E. Galin, Ed., 2005, pp.
67-72.

[20] A. Meyer, F. Neyret, and P. Poulin, “Interactive render-
ing of trees with shading and shadows,” in Rendering
Techniques ’01: Proceedings of the 12nd Eurographics
Workshop. Springer-Verlag, 2001, p. 88.

[21] J. Lluch, E. Camahort, and R. Vivo, “An image based
multiresolution model for interactive foliage rendering,”
WSCG °04: Proc. of 12nd International Conference in
Central Europe on Computer Graphics, Visualization and
Computer Vision, vol. 12, no. 3, pp. 507-514, 2004.

[22] C. Rebollo, I. Remolar, M. Chover, and J. Gumbau,
“Hardware-oriented visualisation of trees,” in ISCIS ’06:
Lecture Notes in Computational Science 4263, Proceed-
ings of the 21st International Symposium on Computer and
Information Sciences, 2006, pp. 374-383.

[23] M. Garland and P. Heckbert, “Surface simplification using

quadric error metrics,” in SIGGRAPH ’97: Proceedings of

the 24th Annual Conference on Computer Graphics and
Interactive Techniques. ACM Press, 1997, pp. 209-216.
[24] 1. Remolar, M. Chover, O. Belmonte, J. Ribelles, and
C. Rebollo, “Geometric simplification of foliage,” in

Proceedings of Eurographics 2002, Short Presentations,
I. Navazo and P. Slusallek, Eds. Eurographics, 2002.

[25] J. Ribelles, A. Lpez, O. Belmonte, I. Remolar, and
M. Chover, “Variable resolution level-of-detail of mul-
tiresolution ordered meshes,” Proc. of 9-th International
Conference in Central Europe on Computer Graphics,
Visualization and Computer Vision (WSCG 2001), vol. 2,
pp- 299-306, 2001.

Cristina Rebollo received her MS degree in Computer Science
from the Universidad Catdlica de Deusto, Vizcaya, Spain, in
1988, and her PhD in Computer Science from the Universitat
Jaume I, Castell6én, Spain, in 2006.

Since 2004, she has been an Assistant Professor of Computer
Science at the department of Computer Languages and Systems
at the Universitat Jaume I, Spain. Her research interests include
multiresolution modelling, hardware-graphics programming and
real time visualisation of outdoor scenes.

Inmaculada Remolar received her MS degree in Computer
Science from the Universidad Politécnica de Valencia, Valencia,
Spain, in 1995, and her PhD in Computer Science from the
Universitat Jaume I, Castellén, Spain, in 2005.

She has been an Assistant Professor of Computer Science
at the department of Computer Languages and Systems at the
Universitat Jaume I, Spain, since 1998. Her research interests
include multiresolution modelling, real time visualisation of
trees oriented to computer games.

Dr. Remolar is a member of Eurographics.

Miguel Chover received his MS degree in Computer Science
in 1992, and his PhD in Computer Science in 1996, from the
Universidad Politécnica de Valencia, Valencia, Spain.

Since 1992, he has been an Assistant Professor of Computer
Science at the department of Computer Languages and Systems
at the Universitat Jaume I, Spain. His research areas include
multiresolution modelling, real time visualisation and collabo-
rative virtual worlds.

Dr. Chover is a member of Eurographics.

Jestis Gumbau received his MS degree in Computer Science
in 2004 from the Universitat Jaume I, Castellén, Spain and is
currently pursuing his PhD in Computer Science from the same
University.

He is currently a Software Engineer working in an European
Project developed in the Universitat Jaume I.

His research areas include multiresolution modelling, real
time visualisation and collaborative virtual worlds.

Oscar Ripollés is a full time PhD student at the Universitat
Jaume I in Castellén, Spain, in the Computer Graphics group.
He received his MS degree in Computer Science in 2004 at the
same University.

His research interests include multiresolution modelling, ge-
ometry optimization, hardware programming and virtual com-
munities.

Figure 12. Forest visualised full detailed.

Figure 13. Forest visualised reducing the detail in 40%.

Figure 14. Visual comparison of the scenes.

VDF Ratio
n Leaves MB.
Betula Populifolia 8,019 16,158 | 0.80 1.62
Betula Lenta 20,090 40,465 2.01 1.62
Sorbus Aucuparia 24,498 49,337 2.45 1.62
Taxus Baccata 47,520 95,679 | 4.76 1.62
TABLE II.

TREES WITH THEIR CHARACTERISTICS AND VDF STORAGE COST.

LoDF (no Hardware-Oriented) Ratio
n Leaves Groups MB.
Betula Populifolia 8,019 16,158 119 0.61 1.24
Betula Lenta 20,090 40,465 285 1.54 1.24
Sorbus Aucuparia 24,498 49,337 339 1.87 1.24
Taxus Baccata 47,520 95,679 641 3.63 1.24
TABLE III.

TREES WITH THEIR CHARACTERISTICS AND LODF (NO
HARDWARE-ORIENTED) STORAGE COST.

LoDF (no Hardware-Oriented) Ratio

n Leaves Groups MB.
Pistacia Lentiscus 5,504 11,098 89 0.42 1.24
Spartium Junceum 10,585 21,325 155 0.81 1.24
Olea Europaea 15,880 31,987 288 1.21 1.24
C.Sempervirens 19,675 39,626 277 1.50 1.24
Quercus Suber 19,999 40,280 282 1.53 1.24
Sorbus Aucuparia 24,503 49,343 227 1.50 1.24
J. Oxycedrus 31,880 64,169 440 2.46 1.24
Quercus Cerris 40,598 81,753 558 3.10 1.24
Taxus Baccata 47,520 95,680 641 3.63 1.24

TABLE IV.

TREES WITH THEIR CHARACTERISTICS AND LODF (NO
HARDWARE-ORIENTED) STORAGE COST.

Original

Vertices Polygons Leaves MB.
Betula Populifolia 32,560 16,280 8,140 | 0.50
Betula Lenta 81,504 40,752 20,376 | 1.24
Pistacia Lentiscus 22,376 11,188 5,594 | 0.34
Spartium Junceum 42,960 21,480 10,740 | 0.66
Olea Europaea 64,428 32,214 16,107 | 0.98
C.Sempervirens 79,804 39,902 19,951 1.22
Quercus Suber 81,124 40,562 20,281 1.24
Sorbus Aucuparia 99,360 49,680 24,840 | 1.52
J. Oxycedrus 129,156 64,578 32,289 1.97
Quercus Cerris 164,620 82,310 41,155 2.51
Taxus Baccata 192,640 96,320 48,160 | 2.94

TABLE 1.

TREES WITH THEIR CHARACTERISTICS AND ORIGINAL STORAGE
COST.

LoDF (Hardware-Oriented) Ratio
n Leaves Groups MB.
Pistacia Lentiscus 5,504 11,098 89 0.51 1.49
Spartium Junceum 10,585 21,325 155 0.97 1.49
Olea Europaea 15,880 31,987 288 1.46 1.49
C.Sempervirens 19,675 39,626 277 1.81 1.49
Quercus Suber 19,999 40,280 282 1.84 1.49
Sorbus Aucuparia 24,503 49,343 2°27 1.50 1.49
J. Oxycedrus 31,880 64,169 440 2.93 1.49
Quercus Cerris 40,598 81,753 558 3.73 1.49
Taxus Baccata 47,520 95,680 641 4.37 1.49
TABLE V.

TREES WITH THEIR CHARACTERISTICS AND LODF
(HARDWARE-ORIENTED) STORAGE COST.

120

80

(ms)

60

50

40

Total time

30

20

10

T T T T T T T
LoDF + LodStrip (no hardware-oriented) ——
VDF + MOM ——— 7|

L L
0.2 0.3 0.4 0.5 0.6

Uniform Level of detail

150
140
130
120
110
100

(ms)

90
80
70
60

Total time

50
40
30
20
10

T T T T T T T
LoDF + LodStrip (no hardware-oriented) ———
VDF + MOM

Figure 15. Tree Taxus Baccata. Results

30

0.4 0.5 0.6 0.7

Variable Level of detail

28 \

26
24
22
20

(ms)

18
16
14
12

Total time

10

T T T T T T
LoDF + LodStrip (no hardware-oriented)
LoDF + LodStrip

(hardware-oriented)

[SEN IS

0.4 0.5 0.6

Uniform Level of detail

(ms)

Total time

T T T T T T T
LoDF + LodStrip (no hardware-oriented) ——
LoDF + LodStrip (hardware-oriented) ——

Figure 16. Tree Taxus

1 1 1
0.4 0.5 0.6 0.7
Variable Level of detail

Baccata. Results obtained when comparing LoDF+LodStrip with and without taking advantage of the graphics hardware.

L
0.7 0.8 0.9 1

0.8 0.9 1

0.7 0.8 0.9 1

L
0.8 0.9 1

(ms)

Extraction time

(ms)

Extraction time

(ms)

Extraction time

(ms)

Extraction time

90

80

70

60

50

40

30

20

150
140
130
120
110
100
90
80
70
60
50
40
30

T T T T T T
LoDF + LodStrip (no hardware-oriented) ——
VDF + MOM ——— 7

L L L
0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

Uniform Level of detail

T T T T T T T
LoDF + LodStrip (no hardware-oriented) ———
VDF + MOM

o

0.2 0.3 0.4 0.5 0.7 0.8 0.9 1

0.6
Variable Level of detail

obtained when comparing VDF+MOM with LoDF+Lodstrip.

T T T T T T
LoDF + LodStrip (no hardware-oriented) ——
LoDF + LodStrip

(hardware-oriented) ——

0.4 0.5 0.6 0.7 0.8 0.9 1

Uniform Level of detail

T T T T T T
LoDF + LodStrip (no hardware-oriented) ——
LoDF + LodStrip (hardware-oriented) ———

S—

0.

1

L L
0.7 0.8 0.9

1
0.5
Variable Level of detail

L
0.2 0.3 0.4 0.6

