
FAST RENDERING OF LEAVES
C. Rebollo, J. Gumbau, O. Ripolles, M. Chover, I. Remolar

Dept. Lenguajes y Sistemas Informáticos
Universitat Jaume I

Castellón, Spain
email: {rebollo,jgumbau,oripolle,chover,remolar}@uji.es

ABSTRACT
One of the main problems of rendering outdoor scenes in
real time is the representation of trees and plants. The mod-
eling tools for vegetal species generate polygonal models
with such a great geometric complexity that they need effi-
cient techniques for achieving an interactive visualization.
In this article we present a LOD model based on the ge-
ometric representation of leaves that eliminates bus traffic
when changing the level of detail and enables instancing
as many trees as desired. This model allows for a highly
realistic visualization, skeletal animations for wind effects
and also the use of traditional illumination techniques for
polygonal models. The proposed representation permits to
adapt automatically and in a continuous manner the level
of detail, obtaining view-dependent resolutions. The ba-
sic idea consists in initially uploading to the GPU the ver-
tices of the high resolution model and obtaining the desired
approximation by rendering the appropriate vertices. This
model improves the spatial cost and the rendering speed of
any previous model based on the geometric representation
of leaves. With respect to the models based on images, our
solution offers a higher visual quality and also the possibil-
ity of including animations.

KEY WORDS
Real-time rendering, level of detail, natural phenomena

1 Introduction

Interactive visualization of trees and plants poses nowadays
one of the hardest problems in representation of natural
scenes. The great complexity of these models makes it nec-
essary to use techniques that simplify the problem, making
it accessible and exploiting to the maximum the features
of the graphics hardware. Following this idea, the most
important models that have been developed in recent years
can be classified into two general groups: geometry-based
models and image-based models.

1.1 Image-based models

These solutions are usually based on using billboards, vol-
umetric textures or billboard clouds.

Employing billboards for the representation of trees is
a technique that offers good visual results for objects which

Figure 1. A close-up view of the Aesculus hippocastanum.

are far from the viewer. Despite these good characteris-
tics, this solution suffers from noticeable effects of paral-
lax [1]. It is also possible to find in the literature works
that use textured polygons and divide the trees in slices [2]
or in different sets of leaves [3], and then they choose the
most appropriate ones depending on the characteristics of
the scene. These algorithms present ghosting effects and
aliasing when the viewer is close to the trees.

Algorithms based on volumetric textures are not ade-
quate for representing trees in short distances [4, 5, 6, 7],
but offer good results for visualizing dense forests from a
bird’s-eye view.

Finally, it is important to comment on billboard
clouds [8], which suffer from aliasing when the tree is close
to the viewer and also present different problems for ani-
mating leaves. These aliasing effects might be avoided by
applying several textures, but at the expense of overload-
ing the rasterization stage of the GPU [9]. The generation
of forests is based on a set of discrete levels of detail that
might produce popping effects.

1.2 Geometry-based models

It is possible to distinguish two different tendencies be-
tween these models: using multiresolution models over the
polygonal model or resorting to primitives like points or
lines.



On the one hand, multiresolution models entail a high
data traffic between the CPU and the GPU to update the
level of detail of the objects [10]. In addition, these ap-
proaches are not useful for instantiating several times the
same tree because of the data structures they work with.
Some authors have improved these solutions, dividing the
foliage into different sets of leaves and updating only the
affected groups when changing to a different resolution
[11].

On the other hand, the approaches based on points
and lines often represent trunks with lines and leaves with
points, adapting the density and the size of the points de-
pending on the scene requirements [12, 13]. This kind of
representation is effective for distant objects, but visually
unacceptable for close objects.

Other works are based on the representation of trees
with points and triangles. Some authors sample each object
to obtain a list of points [14]. In runtime, and according to
the projected size of each object, it is decided whether the
model should be visualized using triangles, or whether it is
better to use the point-based approach. It is also possible to
find models that organize the triangles and the points in a
regular spatial structure to use the different levels of detail
established during the visualization process [15].

1.3 Model overview

Given that existing solutions present different problems, we
decided to develop a new multiresolution model based on
the geometric representation of the foliage, the Fast Leaves
Model (FLM). On the one hand, discrete algorithms suffer
from disturbing popping artifacts. On the other hand, the
main issue with applying continuous multiresolution tech-
niques to solve that problem is the cost of recalculating the
geometry every time a change in the level of detail happens.

In order to overcome both problems, we have created
a continuous and view-dependent model that reduces the
extraction time to the minimum by needing only simple for-
mulas to obtain the desired approximation. This way, the
cost of changing the level of detail is almost inexistent. For
rendering the different resolutions, it is only necessary to
initially upload the vertices of the foliage to the GPU, and
traverse the same array with different increments depend-
ing on the level of detail we want to render. This initial
set of vertices of a tree species might be used by as many
instances as desired. On top of that, the use of geometry
offers realistic representations in short distances. Figure 1
presents the quality of a close-up view of a tree rendered
using our solution.

The presented representation is easily integrated in
the graphics pipeline, allowing us to apply traditional tech-
niques for collisions and for animating and illuminating the
trees. In this case, the animation of the leaves is carried
out in the GPU through skeletons. The illumination and
the cast shadows are generated in the rasterization stage by
means of shadow maps.

It is important to mention that we will use two dif-

Figure 2. Hierarchical structure of a set of leaves.

ferent multiresolution models for managing the level of
detail of a tree. The trunk and the branches will be ren-
dered using a multiresolution model for manifold meshes,
which is based on the use of triangle strips. This model,
known as LODStrips [16], is a continuous multiresolution
model of uniform resolution that exploits the possibilities
of the graphics hardware. The leaves will be rendered using
the multiresolution model we are presenting in this paper,
whose basic characteristics will be explained in the follow-
ing sections.

2 Fast leaves model

The basic idea of the model is to use the set of vertices of
the original model to represent the leaves through all the
approximations. With this objective in mind, the first step
consists in transforming the set of leaves initially defined
as quadrilaterals into triangles. This conversion reduces the
size of the array of vertices in a 25% and, on top of that, the
construction of the model is also simplified.

The second step consists in rearranging the vertices
by means of a hierarchy of bounding boxes. The next step
is to find a simplification sequence that fits our representa-
tion. Finally, the vertices that define the triangles, with their
texture coordinates and normal vectors, will be uploaded to
the GPU for obtaining an interactive visualization. These
steps will be explained in the following sections.

The input trees of the multiresolution model presented
may be developed with any CAD application that mod-
els vegetal species. In this paper, the models used for the
validation of the multiresolution model have been built us-
ing XFrog [17]. This commercial software represents the
trunks and the branches as triangle meshes, while leaves
are rendered as textured quadrilaterals. Animations to gen-
erate wind effects can be obtained by adding skeletons to
the trees that have been constructed.

2.1 Sorting algorithm

To obtain an adequate simplification sequence, we will
construct a hierarchical structure of axis-aligned bounding



boxes (AABB) (see Figure 2). This structure is necessary
for our simplification process, but will also be useful for the
frustum culling. This algorithm could be easily extended
to use oriented bounding boxes (OBB), which would offer
more precise simplifications.

Simplify (leaves, AABB) {
if (leaves>2) {
Axis=LongerAxis(AABB);

Divide(Axis,leaves,leavesL, leavesR);

AABBL=CalculateAABB(leavesL);

AABBR=CalculateAABB(leavesR);

if (MoreVisible(LeavesL)) {
Simplify (LeavesL,AABBL)

Simplify (LeavesR,AABBR)

}
else {

Simplify (LeavesR,AABBR)

Simplify (LeavesL,AABBL)

}
Write (leaves);

}
}

Figure 3. Pseudo-code of the simplification algorithm.

The algorithm, presented in Figure 3, works as fol-
lows:

• Initially, the AABB adjusted to the original set of
leaves is calculated.

• Following the longer diagonal of the AABB, the set of
leaves is divided into two subsets with an even number
of leaves.

• The AABB of those two subsets of leaves is calcu-
lated, and the algorithm repeats this subdivision pro-
cess recursively.

• Finally, when the recursion has finished and there are
only two leaves left, the sequence of leaves is con-
structed.

Every time we obtain two subsets after dividing the
previous one, the algorithm has to choose the subset to start
the recursion with. The criterion followed for this decision
is based on the visibility of each one, as the algorithm will
choose the subset of leaves which is more visible. This
choice is made using a metric based on the point of view
[18]. The algorithm orders the leaves according to their
importance. The most visible leaves of the tree will always
appear in the beginning of the sequence, and the inner ones
will be at the end and, therefore, will be simplified first.

Figure 4. Simplification operation.

2.2 Simplification algorithm

Once the sequence of ordered vertices has been obtained,
the process is ready to carry out the simplification step.
With the intention of minimizing the information that is
necessary to represent the different levels of detail, the sim-
plified leaves must share the vertices of the original ones.
The leaf simplification operation takes two initial leaves
and obtains an only one (see Figure 4). Following the ex-
ample given in that figure, the two initial leaves would be
defined by the triangles t0 and t1. After the collapse oper-
ation, the resulting leaf would be rendered using vertices 0
and 2 from the first leaf (t0), and vertex 1 from the second
leaf (t1). This way, the new leaf will be rendered using the
same array of vertices, but making increments of 2. It is
important to mention that, in this example and in the fol-
lowing ones, values 0, 1 and 2 that are used to represent a
triangle are referred to the first, second and third vertex of
that triangle respectively. This simplification, although not
being as precise as the one presented in [19], is perfectly
adapted to our representation, and produces good visual re-
sults.

Figure 5 shows the resulting sequence of leaves ob-
tained after the simplification algorithm has been applied.
The leaves coloured in green (t0 to t7) represent the original
set of leaves following the simplification order. The rest are
the leaves obtained after different collapse operations. All
the leaves will be rendered using the array of vertices be-
longing to the high resolution model, choosing the correct
increment to traverse the array. For obtaining the leaves of
the initial set, it is necessary to use an increment of 1. Ev-
ery time we want to obtain the leaves from a higher level of
the hierarchy, we must multiply the increment by two.

2.3 Rendering algorithm

One of the main goals of the rendering algorithm we have
developed is to offer a continuous transition between the
different levels of detail. If we need to move to a coarser
level of detail, the rendering algorithm eliminates two



Figure 5. Sequence of original leaves and binary tree ob-
tained after the simplification.

leaves of the current approximation, and adds the leaf that
replaces them. On the contrary, if we wanted to move
to a more detailed approximation, the rendering algorithm
would apply the inverse operation.

In order to render the desired approximation, the ar-
ray of vertices is traversed just once, using the correct in-
crements to choose the appropriate vertices. As we have
commented before, every level of our hierarchy of leaves
needs a different increment. In general, the algorithm will
render leaves from two different levels and therefore it will
be necessary to use two different increments: one for the
first part of the array, and the other one for the rest of the
vertices. For example, to eliminate the right-most leaf of
the tree represented in Figure 5, it is enough to draw the
vertices of the triangles t0 to t5 with an increment of 1, and
the vertices of the triangles t6 and t7 with an increment of
2 (drawing vertices 0 and 2 of the triangle t6, and 1 of t7).

As it has been commented before, we have developed
our multiresolution model with the intention of offering
variable resolution of the crown of the trees. The initial di-
vision of the foliage is made using the hierarchy of AABB
obtained in the simplification process, which allows us to
organize the set of leaves in different groups, each one hav-
ing their own array of leaves. This way, it is possible to ap-
ply different resolutions to different groups of leaves, visu-
alizing with more detail the zones of the tree located closer
to the observer, while the back zones have a lower detail.
The criterion used to select the suitable level of detail is the
Bounding Box projection. This error is calculated as the re-
lation between the projected area of the different bounding
boxes and the total area of the screen. The result will be
a value between 0 and 1, where 0 would refer the coarsest
level of detail and 1 would be the highest detail.

Figure 6 presents the pseudo-code of the rendering al-
gorithms. This algorithm takes as input the data that defines
the leaves at their highest resolution. Every set of leaves
will be rendered if it is visible and will adapt its level of
detail according to its Bounding Box projection. The Ren-

derLeaves function will traverse the array of vertices using
two increments, as in the worst case we will draw leaves
from two different levels of the binary tree. For the correct
performance of the algorithm, it is necessary to know the
number of vertices to draw with each one of the increments
(#v1 and #v2), the value of the increment (step) used in the
first section (the second increment is obtained multiplying
by two the first one) and the position in the array where we
must switch between those two different increments (the
first increment is applied starting from the beginning of the
array). These values are obtained with the Compute func-
tion that applies straightforward formulas with constant ex-
ecution time. The Render function uses these parameters to
tell the GPU which vertices to render, drawing the foliage
with at most two GPU calls.

RenderFoliage (Foliage) {
for (∀ LeaveSet ∈ Foliage) {

if (notCulled(LeaveSet)) {
LOD=projectedAABB(LeaveSet);

RenderLeaves(LeaveSet,LOD);

}
}

RenderLeaves (LeaveSet,LOD) {
if (LODChange) {

Compute(#leaves,#v1,#v2,step,init2);

Render(leaves,0,#v1,step);

if (#v2 != 0) {
Render(leaves,init2,#v2,step*2);

}
}

}

Figure 6. Pseudo-code of the rendering algorithms.

In Figure 7 it is shown an example of the simplifi-
cation of an initial set of seven leaves. This example will
allow us to analyze the way this algorithm works. The trace
of the rendering process of the different levels of detail is
presented in Figure 8, where for each level of detail are
shown the drawn triangles, and the two different sections
of the array that are traversed (the vertices that are drawn
have been coloured). When the number of leaves of an ap-
proximation is odd, the last leaf is no taken into account and
it is not rendered, and the leaves that are simplified are the
two leaves that come before. For every step we can see the
leave that appears, the two leaves that disappear and also
the vertices that are involved. The traversal of the different
sections of the array of vertices is done with the appropriate
increment. As we can see, the number of leaves visualized
decreases in one every time we change to a coarser level of
detail. All the information that is necessary to traverse the
array of vertices is shown in Table 1.



Figure 7. Example of the binary tree obtained after the
simplification of a set of seven leaves.

#leaves #v1 #v2 step step*2 init2
7 21 0 1 null 0
6 15 3 1 2 12
5 9 6 1 2 6
4 3 9 1 2 0
3 9 0 2 null 0
2 3 3 2 4 0
1 3 0 8 null 0

Table 1. Trace of the algorithm.

3 Results

In order to prove the validity of the model, our aim has been
to verify not only the low storage cost and the fast extrac-
tion and visualization process, but also the quality of the
resulting approximations. All the experiments were carried
out using Windows XP on a Dell PC with a processor at
2.8 Ghz, 2 GB RAM and an nVidia GeForce 7800 graphics
card with 256MB RAM.

Figures 9 show different levels of detail (100%, 50%
and 25% of the highest detail) of one of the tree species
used in our tests. These approximations prove that the sim-
plification maintains the shape and the appearance of the
original tree.

With the aim of showing how the visual quality is
maintained with FLM, Figure 10 gives visual results of
a forest formed by 100 trees of eight different species
amounting for more than 15 millions of polygons. In this
Figure, the first image represents the forest obtained with
our multiresolution model, the second one offers the high-
est detailed view of the scene, and the third one shows the
difference between those images. It can be seen how, de-
spite reducing the polygons rendered in a 30%, the visual

Figure 8. Trace for the example set of leaves.



(a) 38124 leaves. (b) 19062 leaves. (c) 9531 leaves.

Figure 9. Results obtained for the tree model Oela Europaea.

appearance is assured as much as possible, as only those
trees whose projected Bounding Box go beyond a thresh-
old will reduce their level of detail. Thus, it can be observed
how the instances located in the background have a higher
error and how this error is almost visually imperceptible.

It is important to underline that we have maintained
the same visual quality in the temporal tests performed.

3.1 Storage cost

The use of the approach presented in this paper (FLM) of-
fers a low storing cost as it does not store the indices of
the leaves. This way, FLM just needs the data related to
the vertices and a small piece of information for managing
the level of detail. If we decided to render more than one
instance of the same tree, the vertices information might be
shared between all the instances. It is important to com-
ment that other models like [11] increase the storing cost
as they need to store the original geometry data and a no-
ticeable quantity of additional information. On top of that,
instantiation is not well supported by these models as, de-
spite sharing the vertices array, all the information related
to leaves and to manage the level of detail must be repli-
cated for every instance we might want to use.

3.2 Temporal cost

To test the rendering speed of the approach we are present-
ing, we decided to render a forest formed by a different
number of instances of the Fraxinus Ornus Manna tree,
which is composed of more than 28,000 leaves. In these
tests, shown in Table 2, we compare the speed of our so-
lution against the results of rendering the whole geometry
without any kind of level-of-detail management. It can be
easily seen how FLM increases the rendering speed, ob-
taining nearly three times more FPS for all the cases.

Number of instances
25 50 75 100 200

No LOD 45 21 14 11 5
FLM 115 52 38 27 16

Table 2. FPS of scenes with different number of trees.

4 Conclusions and future work

In this paper we have presented a new continuous multires-
olution model for the representation of the crown of a tree,
which is adapted perfectly to the characteristics of the cur-
rent graphics hardware. The extraction process, which is
one of the main problems of continuous multiresolution
models, has been reduced to just straightforward formu-
las. In addition, the data that must be sent through the bus
every time a change in the level of detail happens is elim-
inated. This variable resolution model adjusts the number
of leaves in accordance to the position and distance to the
viewer. Among its main features, we want to underline the
possibility of using the same data structures in the GPU for
different instances of the same species, allowing for the cre-
ation of multiple instances of the same tree species without
increasing the memory cost.

As it has been defined as a model based on triangles, it
is perfectly adapted to the graphics pipeline allowing skele-
tal animations to generate wind simulation and other ad-
vanced effects of illumination that can be obtained with
pixel shaders.

Nowadays, we are working in a scene manager that
decides for every instance which is the most adequate level
of detail, as well as the quality of the approximations used
to calculate the cast shadows and when should they be gen-
erated.



(a) Scene with FLM managing the level of detail.

(b) Scene with the full detailed geometry.

(c) Difference image between a) and b).

Figure 10. Visual comparison of the FLM model.



Acknowledgements

This work was supported by the Spanish Ministry of Sci-
ence and Technology with grants TIN2004-07451-C03-03
(MATER) and FIT-350101-2004-15, the European Union
in the project IST-2-004363 (GameTools: Advanced Tools
for Developing Highly Realistic Computer Games) and
FEDER funds.

References

[1] Speedtree, interactive data visualization inc.
http://www.idvinc.com/speedtree/,
2005.

[2] A. Jakulin. Interactive vegetation rendering with slic-
ing and blending. In A. de Sousa and J.C. Torres, ed-
itors, Proc. Eurographics 2000 (Short Presentations).
Eurographics, 2000.

[3] J. Lluch, E. Camahort, and R. Vivo. An image based
multiresolution model for interactive foliage render-
ing. Journal of WSCG’04, 12(3):507–514, 2004.

[4] A. Meyer and F. Neyret. Interactive volumetric tex-
tures. In George Drettakis and Nelson Max, editors,
Eurographics Rendering Workshop 1998, pages 157–
168. Springer Wein, 1998.

[5] A. Meyer, F. Neyret, and P. Poulin. Interactive render-
ing of trees with shading and shadows. In Eurograph-
ics Workshop on Rendering. Springer-Verlag, 2001.

[6] P. Decaudin and F. Neyret. Rendering forest scenes in
real-time. In Rendering Techniques ’04 (Eurograph-
ics Symposium on Rendering), pages 93–102, 2004.

[7] A. Reche, I. Martin, and G. Drettakis. Volumet-
ric reconstruction and interactive rendering of trees
from photographs. ACM Transactions on Graphics
(SIGGRAPH Conference Proceedings), 23(3):720–
727, 2004.

[8] A. Fuhrmman, E. Umlauf, and S. Mantler. Extreme
model simplification for forest rendering. In P. Poulin
E. Galin, editor, Eurographics Workshop on Natural
Phenomena, pages 57–66, 2005.

[9] I. Garcia, M. Sbert, and L. Szirmay-Kalos. Leaf clus-
ter impostors for tree rendering with parallax. In Proc.
Eurographics 2005 (Short Presentations). Eurograph-
ics, 2005.

[10] I. Remolar, M. Chover, J. Ribelles, and O. Belmonte.
View-dependent multiresolution model for foliage.
Journal of WSCG’03, 11(2):370–378, 2003.

[11] C. Rebollo, I. Remolar, M. Chover, and O. Ripolls.
An efficient continuous level of detail model for fo-
liage. Winter School of Computer Graphics, 2006.

[12] P. Oppenheimer. Real time design and animation of
fractal plants and trees. In SIGGRAPH ’86: Pro-
ceedings of the 13th annual conference on Computer
graphics and interactive techniques, pages 55–64.
ACM Press, 1986.

[13] J. Weber and J. Penn. Creation and rendering of real-
istic trees. In Robert Cook, editor, SIGGRAPH ’95:
Proceedings of the 22nd annual conference on Com-
puter graphics and interactive techniques, pages 119–
128. ACM Press, 1995.

[14] O. Deussen, C. Colditz, M. Stamminger, and G. Dret-
takis. Interactive visualization of complex plant
ecosystems. In VIS ’02: Proceedings of the con-
ference on Visualization ’02, pages 219–226. IEEE
Computer Society, 2002.

[15] G. Gilet, A. Meyer, and F. Neyret. Point-based ren-
dering of trees. In P. Poulin E. Galin, editor, Euro-
graphics Workshop on Natural Phenomena, 2005.

[16] J. F. Ramos and M. Chover. Lodstrips: Level of detail
strips. In International Conference on Computational
Science, pages 107–114, 2004.

[17] Greenworks: Organic software.
http://www.greenworks.de/, 2005.

[18] P. Castell, M. Sbert, M. Chover, and M. Feixas.
Techniques for computing viewpoint entropy of a 3d
scene. In Lecture Notes in Computer Science 3992,
pages 263 – 270, 2006.

[19] I. Remolar, M. Chover, O. Belmonte, J. Ribelles,
and C. Rebollo. Geometric simplification of foliage.
In I. Navazo and Ph. Slusallek, editors, Proc. Euro-
graphics 2002 (Short Presentations). Eurographics,
2002.


