SIMPLIFICATION FOR EFFICIENT RENDERING OF TREE FOLIAGE

Jose L. Hidalgo, Francisco J. Abad and Emilio Camahort
D. Sistemas Informaticos y Computacion
Universidad Politécnica de Valencia
Valencia, Spain
email: jhidalgo, fjabad, camahort@dsic.upv.es

ABSTRACT

Tree modeling and rendering is an integral part of
many modern computer graphics applications. Unfortu-
nately, tree models are highly detailed and require a lot of
geometry information. To solve this problem both image-
and geometry-based simplification techniques have been
proposed. These techniques build multiresolution repre-
sentations that either have large storage requirements or
do not allow viewing the trees from a close distance.
We present a multiresolution model that can be efficiently
stored in the GPU and produces highly realistic views of
trees at close range. Our model supports a rendering al-
gorithm that only requires two render operations to display
any level of detail of any tree. We propose a simplification
method targeted at this rendering algorithm. This simpli-
fication method produces continuous levels of detail of the
leaves of each tree. We show that our algorithm can render
scenes with as many as several million trees modeled using
our representation.

KEY WORDS
Tree modeling and rendering, multiresolution representa-
tions, geometric simplification, GPU-based rendering.

1 Introduction

Reproducing realistic natural scenes has always been a dif-
ficult challenge in real-time rendering applications. Natural
scenes contain different species of trees and modeling each
of them usually requires a huge amount of geometric in-
formation. Representing a scene made of several models
at full resolution is not possible, even with modern GPUs.
Additional techniques are required to render those scenes
at interactive rates.

The two most used approaches to tree and plant ren-
dering are geometry- and image-based techniques. The
goals of both types of techniques are to render a large num-
ber of trees and, at the same time, to obtain the most re-
alistic images. Image-based techniques usually start work-
ing on a complete geometric model of the tree. This is
because the geometric representation achieves the highest
level of detail, at the expense of higher complexity. There-
fore, research on efficient geometric algorithms is neces-
sary in both fields.

This paper presents simplification and rendering algo-
rithms suitable for close tree exploration. They allow real-
time level of detail changes of trees with no time penalty.
Furthermore, all the trees of the same species share the
same data structure. That is, we can instantiate millions
of trees based on a few geometric models with very low
memory overhead.

This paper is organized as follows. First, we briefly
present current techniques used to represent trees. Then,
we present our rendering algorithm and simplification
method. The paper ends with some results and conclusions.

2 Background

The two main goals in applications that reproduce tree
species are: to achieve high quality images of a single tree
to explore it, and to obtain high quality renderings of forests
with different trees. We try to fulfill both goals.

In [1, 2] Decauding et al. and Beherendt et al. intro-
duced different techniques to render dense forests based on
3D textures and volumetric algorithms. These techniques
work well for viewing a forest from far away, but artifacts
appear when the viewer gets closer to the trees. This is use-
ful in applications like flight simulators, but does not work
when the user is allowed into the forest.

Techniques for rendering single trees, like image-
based and geometry-based techniques, can be extended to
render forests with some limitations. Current research has
shown that using just the geometric representation of a
polygonal tree is not feasible. Therefore simplification or
multi-resolution techniques are needed [3, 4].

2.1 Geometry- and Image-Based Represen-
tations

Most of the techniques used to represent trees and plants
are either geometry-based [5] or image-based [6, 2]. Other
authors have used particle systems [7].

One of the most important problems that image-based
techniques have is parallax simulation. When the user
looks around a tree, she or he should see different levels of
leaf depth, moving at different speeds. In [8] the authors
solve this problem using static planar impostors that re-
place sets of leaves located nearly on the same plane. Still,

most image-based techniques present problems when ren-
dering close views of the tree.

To solve this problem, we use geometry-based meth-
ods. One solution creates a small number of discrete reso-
lution levels called levels of detail (LODs). Discrete LODs
are useful for real-time applications and videogames since
they have acceptable GPU memory requirements and their
models do not need to be updated. Their drawback is the
popping effect (sudden changes in the image) that occurs
when the LOD changes.

Continuous LOD algorithms solve this problem by al-
lowing smooth transitions between LODs. They are more
difficult to generate and handle, but produce no popping
artifacts [9].

Itis very difficult to create a complete real application
using a purely geometric approach. Usually, interactive
applications need a balanced use of geometry and image-
based techniques, such as impostors [10, 11].

2.2 Leaf Simplification Techniques

The techniques used to simplify general geometric models
usually fail to simplify sparse geometries, like tree foliage.
Simplification techniques are based on the collapse of sev-
eral polygons into a single one, or simply on the removal
of polygons from the model. When the model is composed
of isolated polygons, the simplified models are usually un-
acceptable.

Remolar et al. present a simplification algorithm de-
signed for sparse geometric models [12]. This method is
based on a simplification operation that collapses those two
leaves that minimize a distance function. The distance
function is based on the distance between the two leaves
and the number of original leaves represented by each LOD
node. This operation takes two leaves and creates a new
leaf with area similar to the originals’. The method reuses
the vertex information of the leaves and therefore adds no
new geometric information to the model.

Zhang and Blaise introduce a similar approach that
adds new parameters like area similarity, deformation mea-
sures and a diameter penalty to the distance function [13].
The new distance function can be fine tuned by adjusting
several weights.

In [5] two geometry extraction algorithms are pre-
sented. They include both a variable and a uniform tech-
nique to extract the polygons that compose a given LOD.
Variable extraction algorithms allow the user to direct the
extraction using a given criterion like, for example, camera
position. On the other hand, uniform extraction increases
or decreases the level of detail globally.

Both techniques require every instance to store a list
with its active nodes. Given the hierarchical data structure
derived from the distance function used to decide whether
two leaves should collapse, and given the specific criteria,
each node is checked to decide whether it has to be col-
lapsed or split. Then, the changes are applied and the nodes
are updated.

This algorithm can not be used in scenes with millions
of trees because each instance needs information of its own
state and even if vertex information is stored in the GPU,
indices can not be shared between instances. On the other
hand, only the geometric location of each vertex can be
shared among several leaves, and new normals and texture
coordinates should be computed for each new leaf. There-
fore, these multiresolution techniques can not be used in
applications for real-time rendering of forests with a large
number of trees.

3 Our Approach

The goal of the simplification method is to preserve the
original appearance of the tree, for every viewpoint. Fur-
thermore, the appearance of a tree depends on its distance
to the viewer. Therefore, we define a good simplification
criterion as one that minimizes the change in the appear-
ance of the tree when it is represented at the viewing dis-
tance associated to the LOD.

Our simplification algorithm is based on the Foliage
Simplification Algorithm (FSA) [5, 12]. It repeatedly se-
lects and collapses pairs of leaves that minimize a distance
function. Therefore, each simplification step reduces by
one the number of leaves in the tree model. Our approach
improves on this simplification algorithm and implements
a more efficient rendering algorithm.

We build a continuous LOD model for the leaves of a
tree. Since the selection process to determine which pair of
leaves is going to be collapsed and the collapse process are
independent, we will address each one of them separately.
A multiresolution representation for the branches of a tree
can also be built by using traditional geometric simplifica-
tion.

3.1 Selection Criteria

In order to determine which pair of leaves should be col-
lapsed we find the pair of leaves that minimizes a distance
function. This function depends on:

e the euclidean distance between the leaf centers,

e coplanarity: the angle between the leaves’ normals,

e number of leaves: the difference between the actual
number of leaves represented by each leaf; initially,
each leaf in the model represents only one leaf (i.e.,
itself); after collapsing two leaves, the resulting leaf
represents the sum of the number of leaves accounted
for by the original leaves,

o difference in area: takes into account the difference
between the area of each leaf, to avoid large leaves
collapsing with much smaller leaves, and

e interiority: it is the distance from the midpoint be-
tween both leaves and the axis of the tree; this crite-
rion favors the collapse of the inner leaves of the tree
that, when seen from far away, have less impact on its
appearance.

Each of these factors is weighted by an adjustable pa-
rameter to increase or reduce its importance. Each step in
the simplification process involves computing the distance
function between every pair of leaves and selecting the pair
that minimizes the function.

In order to maintain the aspect of the tree, we impose
limits on the choice of pairs of leaves. Using several thresh-
olds, we prevent pairing of leaves that are too far from each
other or oriented in substantially different directions. At the
end we obtain a few polygons representing all the leaves of
the tree. Each polygon corresponds to a set of leaves lo-
cated close to each other.

3.2 Generating a New Leaf

In this Section we present how to create a new leaf from
the two leaves selected in the previous step. In previous
works, the data structure was oriented to reuse the vertices
of the collapsed leaves in the new leaf [12, 13], thus re-
ducing the amount of memory required by the model. On
the other hand, generating a new leaf using this method has
several drawbacks. First, the new leaf will generally not be
a quad with four coplanar vertices, thus degenerating the
geometry of the leaves in the process. Also, each vertex
stores its texture coordinates. If we choose the four ver-
tices that maximize the resulting area, the correct texturing
of the new leaf can not be guaranteed. Finally, vertices usu-
ally store their normals as well. Reusing old vertices in the
new leaves produces incorrect shading.

Figure 1. Generating a new leaf: (a) the two collapsing
leaves are projected onto a new plane; (b) the size and ori-
entation of the new quad are selected; and (c) the new quad
is obtained.

Our algorithm allows representing the new leaves as
new polygons that do not share any previous vertex infor-
mation. This solves the above drawbacks.

The following algorithm generates a new leaf from
two leaves selected by our distance function

1. The center of the new leaf is located at the midpoint
between the collapsed leaves’ centers, weighted by the
number of leaves represented by each leaf.

2. The orientation of the new leaf (its normal) is the
weighted mean of the normals of the collapsed leaves.

3. Once the plane of the new leaf is defined, we ortho-
graphically project the vertices of both leaves onto it
(see Figure 1). The line that passes through the pro-
jected centers of the leaves defines the main axis of
the new leaf. The secondary axis is perpendicular to
the main axis. This defines the quad that will contain
both projected leaves.

4. Since leaves may or may not overlap, the area of the
new leaf will most likely be different from the sum
of the areas of the original leaves. To avoid a large
increase or decrease in the area of the new leaves, we
set the new leaf to have the average area between the
sum of the areas of the original leaves and the area of
the bounding quad that encloses both projections.

5. The texture coordinates of the new leaf are set tak-
ing into account the foliage density represented by the
leaf, using a pre-computed texture atlas. We assign
a complex texture to a polygon that represents sev-
eral leaves, instead of using huge single leaves as in
the original model. To avoid artifacts when changing
LODs, the texture atlas is more detailed for the finest
LODs (see Figure 2).

Figure 2. Pre-computed texture atlas. (a) to (g) contain
texture images for different leaf LODs.

3.3 Generating the Texture Atlas

In our current implementation we use a texture atlas com-
posed by an artist taking into account the model require-
ments. This atlas is labeled so that, given a leaf density and

DUHEOEHEDEEEGEFHE

Figure 3. Example of a simplification chain. Each leaf is labeled with the order in which it was generated. The highlighted
leaves (at the bottom, in gray) represent the geometry of the original model. The nodes with black background and white label
represent the lowest LOD. Each node points to the node it collapses to.

an LOD, the proper subregion of the atlas is selected to tex-
ture map the LOD’s quad. The problem is how to generate
the texture atlas automatically.

Our approach starts by simplifying the leaves with-
out considering textures. Then we build the atlas by taking
into account leaf collapses with similar numbers of leaves.
Higher LOD leaves require computing better quality tex-
tures, as these leaves are viewed from closer distances. We
compute the distribution of the distances between collapsed
leaves and the distributions of the relative orientations of
the same leaves. Then we decide which are the most sig-
nificant distances and orientations and use them to render
the first level of atlas textures. Each texture contains a pair
of leaves with one of those distances and orientations.

As we simplify lower LODs we start taking into ac-
count the density of leaves within each quad. By density we
mean the leaves’ projected area divided by the supporting
quad’s area. We determine the most significant densities of
leaves and render textures with those densities. The texture
atlas thus obtained has texture maps good for rendering col-
lapsed leaves with different distances and orientations, and
quads with different densities of leaves.

4 Rendering Algorithm

The input of our algorithm is a generic hierarchical simpli-
fication chain. It is stored in a forest data structure, com-
posed of one or more binary trees, as seen in Figure 3. We
transform the hierarchical data structure into a linear data
structure that allows uniform LOD extraction. After build-
ing the data structure, we store it in the GPU memory as
long as needed, since it is a static structure that does not
need to be modified. This reduces the amount of CPU-
to-GPU communication when rendering lists of polygons
whose information is already stored in the GPU. Further-
more, all the instances of the same tree type share the same
data structure. Each instance only needs to know its own
LOD at rendering time. This means that there is no geome-
try extraction involved in the process. Thus the switch from
an LOD to another has no additional cost.

Figure 4 shows the process of linearizing the hierar-
chical simplification chain shown in Figure 3. First, the
vector is initialized with the roots of the (binary) forest.
The black line in the middle separates the leaves into two
groups: the original geometric model (on the left) and the
new leaves created by collapse operations (on the right).
Indices p and g point to the first free position for each type
of leaf. The algorithm processes backwards the new leaves,
distributing its children in the proper part of the vector, de-
pending on its type.

In parallel we build the LOD table, where each entry
contains 3 integers a, b, c. This table indicates which part of
the vector should be rendered for each LOD. Our rendering
algorithm is able to draw any LOD with just two render
operations of two subvectors of the geometry vector: [0, a]
and [b, c|. Here 0 and b are the offsets within the vector and
a and c are the lengths of the subvectors.

There are several advantages in this approach. First,
all the information is shared among all the instances of
the same species, and there is no redundant information.
Second, it is not necessary to update the data structure for
each change of LOD, because it already stores every LOD.
Third, this model only needs to use vertices (it does not use
indices) because the render operations are linear. And last,
the vertices of the new leaves are independent, so they can
be computed freely in each collapse, without the limita-
tions imposed by reusing the original vertices. This allows
us to properly compute both the texture coordinates and the
normals of each new leaf.

4.1 Extended Rendering Algorithm (ERA)

The simplification process described above obtains a con-
tinuous level of detail model that allows us to represent all
the leaves in a tree for a given LOD. However, it seems un-
reasonable to represent the whole tree at the same resolu-
tion, when the viewer is only facing one side of the tree. If
we divide the initial set of leaves into sectors (see Figure 6)
we can apply the simplification process independently to
each of these sectors.

original
oo oo >
Leaves

new
<o = oo
Leaves

p q LOD
—h i
o | TP] [2.262] 0
—{ !
o | LTI] e [2.24,3] 1
___ !
o | | [LT[fJesferfeoles [2.22,4] 2
—{ e = .
B [[[T T TTTT T |ffelsfa]ecl- NG | 122050 @
¥ ——
BRL) [[PEEE-E | oo =

T i T '

" NI ’
10|11|14|15|12|13|6|7|4|5|2|3| | 16 17|1s|19|21|22|2s|24|20|25 [14,16,1] 1
10|11|14|15|12|13|6|7|4|5|2|3|(;|1'i16|17|18|19|21|22|23|24|20|25 [16,16,0] 12
0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 j16 17 18 19 20 21 22 23 24 25 26 27

Figure 4. Leaf vector and LOD table evolution for the example in Figure 3. The first row shows the vector after initialization
and its entry in the LOD table. The following rows show the evolution of the algorithm and how the LOD table is filled. In

each row, the leaves that compose that LOD are encircled.

Once the model is simplified into independent sectors,
the rendering algorithm can be easily extended to perform
two render operations per sector. With this approach, we
can represent the visible part of the tree with higher detail.
Our technique improves on variable LOD representations
because it does not require geometry extraction [5].

This sector-based technique supports rendering differ-
ent tree sectors at different resolutions. For example, vis-
ible outer sectors will usually be rendered with a higher
resolution than occluded and innermost sectors. Further-
more, by allowing sectors of different sizes, this technique
solves the problem of non-uniform trees, where the foliage
distribution is heterogeneous, with sparse clusters of leaves
in certain areas of the tree. Note that this technique works
even if the viewer is above, looking down at all sectors of
the tree.

5 Results

We have implemented our representation and rendering al-
gorithm. They both can be used with different simplifi-
cation algorithms. Our implementation uses OpenGL and
Vertex Buffer Objects (VBOs) to store the multiresolution
representation of the foliage of the trees. A VBO is a GPU
memory area that stores vertex information like position,
normal and texture. For each leaf we store a quad and
for each LOD a set of quads. Changes in LODs only re-
quire two VBO rendering operations. This enables inter-

active rendering of scenes with millions of different tree
instances. Figure 5 shows three different screenshots of a
scene containing up to five million trees modeled with our
representation. Our algorithm processes only the foliage,
in order to render efficiently a complete tree other simplifi-
cation algorithms should be applied to branches and trunk.

6 Conclusions

We have presented new algorithms for simplification, con-
struction and rendering of tree models. Our simplification
algorithm produces continuous LODs for the leaves that
make up the foliage of a tree. All the trees of a species can
be represented by a single quad array stored in the GPU
memory. The different LODs are made of texture mapped
quads that can be efficiently accessed for rendering. Ren-
dering a tree specimen only requires displaying two arrays
of quads stored in the GPU. Changing an LOD requires
no communication between the CPU and the GPU. These
features allow instantiating millions of trees and rendering
hundreds of thousands of trees.

Acknowledgements

This work was partially supported by grant TIN2005-
08863-C03-01 of the Spanish Ministry of Education and
Science and STREP project IST-004363 of the 6th Frame-
work Program of the European Union.

Figure 5. Three different views of a scene with up to five million trees rendered with our algorithm.

Figure 6. Top view of a tree divided into non-uniform sec-
tors; the center sector contains the innermost leaves.

References

(1]

(2]

(3]

(4]

(5]

P. Decaudin and F. Neyret, “Rendering forest scenes
in real-time,” in Eurographics Symposium on Render-
ing, pp- 93—102, june 2004.

S. Behrendt, C. Colditz, O. Franzke, J. Kopf, and
0. Deussen, “Realistic real-time rendering of land-
scapes using billboard clouds,” in EUROGRAPHICS,
vol. 24, 2005.

O. Deussen, P. Hanrahan, B. Lintermann, R. Méch,
M. Pharr, and P. Prusinkiewicz, “Realistic modeling
and rendering of plant ecosystems,” in SIGGRAPH
'98, pp- 275-286, ACM Press, 1998.

G. Szijarté and J. Koloszar, “Hardware accelerated
rendering of foliage for real-time applications,” in
SCCG ’03: Proceedings of the 19th spring confer-
ence on Computer graphics, (New York, NY, USA),
pp- 141-148, ACM Press, 2003.

I. Remolar, M. Chover, J. Ribelles, and O. Bel-
monte, “View-dependent multiresolution model for
foliage,” Journal of WSCG (WSCG’2003), vol. 11,
no. 1, pp. 370-378, 2003.

(6]

(7]

(8]

(9]

[10]

[11]

[12]

[13]

A. Candussi, N. Candussi, and T. Hollerer, “Render-
ing realistic trees and forests in real time,” in Euro-
graphics 2005, Short papers, (Dublin, Ireland), 2005.

D. Marshall, D. S. Fussell, and I. A. T. Camp-
bell, “Multiresolution rendering of complex botan-
ical scenes,” in Proceedings of the conference on
Graphics interface '97, (Toronto, Canada), pp. 97—
104, Canadian Information Processing Society, 1997.

I. Garcia, M. Sbert, and L. Szirmay-Kalos, “Leaf
cluster impostors for tree rendering with parallax,” in
Eurographics 2005, Short papers, (Dublin, Ireland),
2005.

C. Zach, S. Mantler, and K. Karner, “Time-critical
rendering of discrete and continuous levels of detail,”
in VRST ’02: Proceedings of the ACM symposium on
Virtual reality software and technology, (New York,
NY, USA), pp. 1-8, ACM Press, 2002.

E. Sayer, A. Lerner, D. Cohen-Or, Y. Chrysanthou,
and O. Deussen, “Aggressive visibility for render-
ing extremely complex foliage scenes,” in 5th Korea-
Israel Bi-National Conference on Geometric Model-
ing and Computer Graphic, 2004.

S. Dobbyn, J. Hamill, K. O’Conor, and C. O’Sullivan,
“Geopostors: a real-time geometry/impostor crowd
rendering system.,” ACM Trans. Graph., vol. 24,
no. 3, p. 933, 2005.

I. Remolar, M. Chover, O. Belmonte, J. Ribelles, and
C. Rebollo, “Geometric simplification of foliage,” in
Eurographics’02 Short Papers, pp. 397-404, 2002.

X. Zhang and F. Blaise, “Progressive polygon foliage
simplification,” in Plant Growth Modeling and Ap-
plications, (Beijing, China), pp. 182-193, Tsinghua
University Press, October 2003.

