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ABSTRACT 
Multiresolution models are widely employed in computer 
graphics applications in order to reduce the traffic of 
information between the CPU and the GPU. The present 
tendency towards the usage of triangle strips in these 
models is based on its low cost and high rendering speed. 
But using this primitive poses the problem of the 
degeneration of the strips as the level of detail changes. 
Degenerated triangles are those that have no mathematical 
area and imply sending information for triangles that will 
not be rendered. We present a strip generation algorithm to 
solve this problem, where strips are constructed in such a 
way as to maintain their quality through all levels of detail.  
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1. Introduction  
 
A common way to deal with the problem of working with 
the current polygonal models, which have a high and 
growing complexity, is the use of multiresolution modeling 
techniques. According to Garland [1], a multiresolution 
model represents an object through a set of approximations 
at a different level of detail and allows us to recover any of 
them on demand. The first multiresolution models that 
were developed were based on a relatively small number of 
approximations (normally between 5 and 10) [2] and were 
known as discrete multiresolution models. Later, 
continuous multiresolution models appeared with the aim 
of improving discrete models, offering a wide range of 
different approximations to represent the original object. 
Continuous multiresolution models are widely used 
because they are capable of solving the problems of 
interactive visualization, progressive transmission, 
geometric compression and variable resolution. A 
comprehensive description of multiresolution models can 
be found in [3].  
 
Multiresolution models allow us to reduce the amount of 
geometry information sent to the graphics system, which 
results in an improvement in performance. The use of 
triangle strips in these models offers further improvement, 
since it adds a compact representation of the connectivity 
existing in a triangle mesh and enables faster rendering.  

The main problem of multiresolution models based on 
strips arises when, starting from a set of strips representing 
the initial mesh at maximum detail and applying the 
successive simplifications, the strips start to include a large 
quantity of degenerated triangles, repeated vertices and 
unnecessary edges. An example of these low-quality strips 
can be observed in Figure 1, where the strip in the middle is 
collapsed after two simplification steps, where edges 0, 3 
and 1, 2 are also collapsed.  
 

 
Figure 1. Collapse of a strip. 

 
One possible way to overcome this problem is to use strips 
which are dynamically generated for each level of detail. 
Research has been conducted on this approach, and it is 
possible to find methods of building and maintaining a 
good set of triangle strips like the one proposed by Stewart 
[4], and also multiresolution models based on dynamic 
strips [5][6]. But the additional cost involved in generating 
the strips for every level of detail is high; therefore the use 
of static strips, despite their limitations, can turn out to be 
more suitable.  
 
The work presented in this article proposes an algorithm 
for building triangle strips for static models which avoids 
working with low quality strips. It constructs the strips 
from the minimum to the maximum level of detail 
following the simplification sequence, while maintaining 
the original appearance of the 3D model.  



The article presents the following structure. Section 2 
contains a study of the work previously carried out about 
strip search and multiresolution models based on this 
primitive. In section 3 the proposed method is detailed. 
Section 4 offers a comparative study of our algorithm 
against other possible solutions. Lastly, in section 5 the 
results obtained are commented and future lines of work 
are outlined.  
 
 
2. Previous work  
 
2.1. Stripification methods  
 
The use of the triangle strip primitive allows us to greatly 
accelerate the visualization of geometry.  
 
Although finding an optimum set of strips from a given 
triangulation is an NP-complete problem [7], there are 
different solutions which, though not optimum, maximize 
its performance following diverse criteria.  
 
Among the many studies carried out we can highlight the 
methods introduced in [8][9][10] to generate strips in a 
static way, as well as the one proposed by Stewart [4] for 
the dynamic generation of strips. The suggested algorithms 
show differences in generation and rendering speed, in the 
use of memory or in the number of strips generated, which 
make them more suitable for a specific use. It is also 
important to comment on the studies which make optimum 
use of the vertex cache. In this regard, methods such as 
Hoppe’s [11] or the one devised by Nvidia [12] have 
appeared in recent years. The company referenced before 
has created its own library in order to find strips that derive 
the maximum benefit from vertex caches and from the 
spatial locality of vertex buffers.  
 
Finally, mention should be made of the algorithm proposed 
by Belmonte et al. [13], which, as the method presented in 
this article, also considers the generation of strips 
following a simplification criterion. But in this case, as in 
the rest of the algorithms, the generation starting from the 
maximum level of detail and its subsequent simplification 
causes degeneration of the strips obtained at levels of low 
detail. 
 
2.2. Multiresolution methods based on strips  
 
One of the first models to benefit from the triangle strip 
primitive was the one presented by Hoppe [5], known as 
Progressive Meshes and included in Microsoft’s DirectX 
library. This model uses triangles during the change of the 
level of detail but it constructs the strips before the 
visualization. Later, El-Sana et al. [14] presented Skip 
Strips model, which was the first model to maintain a data 
structure to store the strips that avoided the need to 
calculate them in real time. But this model still uses 
triangles to adjust the geometry at each level of detail. 
  

The MTS model [15] uses triangle strips both as the 
storage and the visualization primitive. It consists of a set 
of multiresolution strips, each of which represents a 
triangle strip and all its levels of detail; only the ones that 
are modified when changing the level of detail are updated 
before being rendered. Some time later Dstrips [6] 
appeared, which is a method that tries to maintain the strips 
initially calculated, modifying the existing ones and 
searching for new strips only when a specific zone of the 
model requires it. Recently Lodstrips [16] has been also 
presented, which uses triangle strips both in the data 
structure and the visualization process. It is easy to 
implement and it is efficient and fast in extracting the level 
of detail, which enables soft transitions between the 
different levels of detail to be achieved. 
 
 
3. Our approach  
 
The objective of the algorithm we present is to find triangle 
strips that are optimum for multiresolution models. With 
the method we propose, we intend to avoid the strips to be 
cut when simplified.  
 
With this intention, we start out with the mesh simplified to 
the minimum level of detail, which means we may start 
with just a few triangles. For every step of our algorithm 
we will need to know the vertices that split, the two new 
triangles that appear and the set of existing triangles that 
must be modified. It is possible to collect all this 
information during the simplification process of the 
original mesh.  
 
We can consider two main cases. The first of them, shown 
in Figure 2, represents a refinement along a border edge 
between two strips. In this situation, two triangles will be 
modified and a total of four new vertices for two new 
triangles will be inserted, as each strip will need a swap 
operation.  
 

 
Figure 2. Vertex split along a border edge between two strips. 

 
 



In this way, following the example in Figure 2, strips will 
be initially made up of vertices 1, 2, 3, 4 and 1, 5, 3, 6. 
After the split, they will be made up of vertices 1, 2, 7, 2, 3, 
4 and 1, 5, 7, 5, 3, 6. We should mention that it might be 
possible to find this case with just one strip, this only being 
possible if the strip includes a fan.  

 
The second case can be observed in Figure 3. It shows a 
split along an edge which is not a border. This makes it 
impossible to add the two new triangles into the existing 
strip without resorting to degenerated triangles that would 
increase the number of vertices required. In this case it is 
necessary to create a new strip, since we will be able to 
insert only one of the new triangles into the existing strip. 
The insertion of these two new triangles will involve a rise 
of five units in the total number of vertices. Thus, the strip 
that was initially made up of vertices 1, 2, 3, 4, 5, 6 will 
now contain edges 1, 2, 3, 2, 7, 4, 5, 6 and a new strip will 
appear with vertices 3, 7, 5.  
 

 
Figure 3. Edge expansion along a non-border edge inside a strip. 

 
With the two general cases introduced, the method to build 
strips presented in this article will be similar to the one 
presented in Algorithm 1. The two new triangles share an 
edge with one of the triangles that will be modified, and it 
will therefore be through this edge that we will locate the 
triangle or triangles where we will be able to insert them. 
Once the edge is found, we will simply insert the new 
triangle taking care to choose the right side of the edge. If 
we do not find that edge, we will be obliged to create a new 
strip. Finally, we will always have to check that all the 
modified triangles have been changed correctly. We must 
respect all the changes implied in each step, since 
otherwise we will not obtain the correct polygonal model 
when we reach the maximum level of detail.  
 
3.1. Optimizations 
 
With the algorithm proposed, most steps involve the 
insertion of four new vertices for the two new triangles. 
These four insertions allow us to obtain a 30% saving with 
respect to the three vertices per triangle that would be. 

if find_edge() do 
choose_side(); 
insert_triangle(); 

else do  
create_strip(); 

check_modifications();  
Algorithm 1. Strip generation algorithm.  

 
necessary if we represented the model with a triangle mesh 
To improve these results, the algorithm has been extended 
so that, in each step, no repeated vertices or edges or 
unnecessary edges are inserted. Furthermore, it is possible 
to improve the results if, each time we must create a new 
strip, we try to insert the new triangle at the end of an 
already existing strip.  
 
On many occasions we have no choice but to insert a new 
triangle as a new strip. In successive iterations we may 
have to add a new triangle next to this one. But, depending 
on how we have inserted it, we will be able to do the new 
insertion or not. This is due to the fact that, when inserting 
a new triangle, one of its three edges will not be explicitly 
reflected on the strip and then we will not be able to find it 
in the search for edges in our algorithm. In order to avoid 
this situation as many times as possible, we have 
developed a function that predicts the usefulness of the 
three edges. This prediction is carried out by following 
their evolution throughout the remaining refinement steps. 
With this information we will be able to decide which of 
the three edges is less useful when it comes to inserting the 
new triangle as a new strip. At this point, we have to 
choose whether it is better to eliminate the edge that will be 
used sooner, or the one that will be used later. Our 
experiments have proven that penalizing the edge we will 
use sooner offers better results, since it allows the new 
triangles to be inserted into strips in the last steps of the 
process.  
 
 
4. Results  
 
In order to analyze the strips generated as a result of the 
algorithm presented here, we have conducted a study of the 
vertices sent to the graphics card for different levels of 
detail. These data have been compared with those obtained 
using a simple triangle mesh for each level of detail and 
with a multiresolution model based on strips that uses a 
simplification method involving edge collapse, such as 
Skip-Strips [14], MTS [15] or LodStrips [16]. The 
experiments were carried out using Windows XP on a Dell 
PC with a processor at 2.8 Ghz, 1 GB RAM and an Nvidia 
GeForce 6600 graphics card with 256MB RAM.  
 
 



Figures 4, 5 and 6 offer the obtained results for three 
different polygonal models. They show the number of 
vertices sent to the graphics processor for each level of 
detail, considering 100% as the maximum detail and 0% as 
the minimum, although in the tests 10% was taken as the 
minimum since a lower level of detail would entail 
complete loss of the original shape of the 3D model. It 
should be pointed out that the information marked in the 
figures with the name Triangles refers to a model that uses 
triangle meshes, SMM is an abbreviation of strip-based 
multiresolution model and Strips are the result of the 
algorithm proposed in this article.  
 
As we expected, this algorithm sends fewer vertices than a 
triangle mesh. It can be observed that for high levels of 
detail the example multiresolution model sends fewer 
vertices. But if we consider the total number of vertices 
necessary to go through all the levels of detail, from the 
minimum to the maximum, our method involves less 
information traffic, as shown in Table 1. In this way, for 
more than 60% of the levels the algorithm presented sends 
less geometric information to the GPU. 
 
In Figure 7 the resulting stripification of the cow model 
using our algorithm is presented. In addition to the strips 
representing the model at maximum level of detail, two 
more images taken during the process are also offered, for 
a 33% and a 66% of the total detail. 
 
 
5. Conclusions and future work  
 
We have presented a new method for strips generation in 
which we obtain a set of triangle strips that will maintain its 
quality throughout the simplification process. We improve 
on the results offered by previous stripification algorithms, 
since all of them offer low quality for levels of coarser 
detail. In contrast, our algorithm needs a larger number of 
triangle strips at levels of high detail. But, in general, the 
total number of vertices covering from the minimum to the 
maximum level of detail is about 15% lower than the 
multiresolution model ours was compared with and this 
means a saving of around 50% with respect to the original 
triangle mesh.  
 

 
Figure 4. Results for the cow model. 

 

 
Figure 5. Results for the Al Capone model. 

 

 
Figure 6. Results for the bunny model. 

 

 Triangles SMM Strips 
Cow (5804 triangles) 25.272.930 (100%) 15.752.211 (62.3%) 13.777.800 (54.5%) 
Al Capone (7124 triangles) 38.127.687 (100%) 23.158.015 (60.7%) 20.883.500 (54.7%) 
Bunny (69451 triangles) 3.619.981.407 (100%) 2.163.219.828 (59.7%) 1.976.880.000 (54.6%) 

Table 1. Results in total number of vertices sent going from the minimum to the maximum level of detail. 

 



 
a) 

 
b) 

 
c) 

Figure 7. Stripification of the cow model for a) 33% b) 66% and c) 
100% of the maximum detail. 

 
Through the results it can be observed how, as the level of 
detail is reduced, the strips used by the multiresolution 
model worsen, reaching a point near 20% of detail, where 
it is even better to use the triangle mesh instead of the strips 
the model offers. This lends further support to the idea that 
has encouraged the investigation of this new algorithm, 
which avoids working with low quality strips.  
 
From the results obtained we can also infer that our design 
loses quality as the models increase in size. In many 
applications, such as games, it is usual to work with models 
which are not as complex as the ones analyzed, where it is 
easy to offset this low polygonal complexity with a correct 

treatment of illumination or other aspects of the 
visualization of geometry.  
 
As a guideline in our future work, it would be interesting to 
focus a subsequent study on decreasing the strips generated 
for high levels of detail. In any case, we must also take into 
account that the longest strips are not always better, as was 
proved by Hoppe [11]. Thus, the correct management of 
the vertex cache is a very important issue for possible 
improvements in the algorithm. In the same way, we 
consider that a significant improvement can be achieved by 
utilizing a prediction system that better fits the evolution of 
simplification, since this simple prediction method already 
offers a 5% improvement in the number of vertices sent. 
Finally, it would be interesting to combine the optimization 
of both high and low levels of detail in the same search 
method. With this aim, in future studies it would be 
advisable to consider the search for strips starting from an 
intermediate level of detail.  
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