
QUALITY STRIPS FOR MODELS WITH LEVEL OF DETAIL

Oscar E. Ripollés
Dept. Lenguajes y Sistemas

Informáticos
Universitat Jaume I

12071 Castellón (Spain)
oripolle@sg.uji.es

Miguel Chover
Dept. Lenguajes y Sistemas

Informáticos
Universitat Jaume I

12071 Castellón (Spain)
chover@uji.es

Francisco Ramos
Dept. Lenguajes y Sistemas

Informáticos
Universitat Jaume I

12071 Castellón (Spain)
jromero@uji.es

ABSTRACT
Multiresolution models are widely employed in computer
graphics applications in order to reduce the traffic of
information between the CPU and the GPU. The present
tendency towards the usage of triangle strips in these
models is based on its low cost and high rendering speed.
But using this primitive poses the problem of the
degeneration of the strips as the level of detail changes.
Degenerated triangles are those that have no mathematical
area and imply sending information for triangles that will
not be rendered. We present a strip generation algorithm to
solve this problem, where strips are constructed in such a
way as to maintain their quality through all levels of detail.

KEY WORDS
Stripification, simplification, multiresolution modeling.

1. Introduction

A common way to deal with the problem of working with
the current polygonal models, which have a high and
growing complexity, is the use of multiresolution modeling
techniques. According to Garland [1], a multiresolution
model represents an object through a set of approximations
at a different level of detail and allows us to recover any of
them on demand. The first multiresolution models that
were developed were based on a relatively small number of
approximations (normally between 5 and 10) [2] and were
known as discrete multiresolution models. Later,
continuous multiresolution models appeared with the aim
of improving discrete models, offering a wide range of
different approximations to represent the original object.
Continuous multiresolution models are widely used
because they are capable of solving the problems of
interactive visualization, progressive transmission,
geometric compression and variable resolution. A
comprehensive description of multiresolution models can
be found in [3].

Multiresolution models allow us to reduce the amount of
geometry information sent to the graphics system, which
results in an improvement in performance. The use of
triangle strips in these models offers further improvement,
since it adds a compact representation of the connectivity
existing in a triangle mesh and enables faster rendering.

The main problem of multiresolution models based on
strips arises when, starting from a set of strips representing
the initial mesh at maximum detail and applying the
successive simplifications, the strips start to include a large
quantity of degenerated triangles, repeated vertices and
unnecessary edges. An example of these low-quality strips
can be observed in Figure 1, where the strip in the middle is
collapsed after two simplification steps, where edges 0, 3
and 1, 2 are also collapsed.

Figure 1. Collapse of a strip.

One possible way to overcome this problem is to use strips
which are dynamically generated for each level of detail.
Research has been conducted on this approach, and it is
possible to find methods of building and maintaining a
good set of triangle strips like the one proposed by Stewart
[4], and also multiresolution models based on dynamic
strips [5][6]. But the additional cost involved in generating
the strips for every level of detail is high; therefore the use
of static strips, despite their limitations, can turn out to be
more suitable.

The work presented in this article proposes an algorithm
for building triangle strips for static models which avoids
working with low quality strips. It constructs the strips
from the minimum to the maximum level of detail
following the simplification sequence, while maintaining
the original appearance of the 3D model.

The article presents the following structure. Section 2
contains a study of the work previously carried out about
strip search and multiresolution models based on this
primitive. In section 3 the proposed method is detailed.
Section 4 offers a comparative study of our algorithm
against other possible solutions. Lastly, in section 5 the
results obtained are commented and future lines of work
are outlined.

2. Previous work

2.1. Stripification methods

The use of the triangle strip primitive allows us to greatly
accelerate the visualization of geometry.

Although finding an optimum set of strips from a given
triangulation is an NP-complete problem [7], there are
different solutions which, though not optimum, maximize
its performance following diverse criteria.

Among the many studies carried out we can highlight the
methods introduced in [8][9][10] to generate strips in a
static way, as well as the one proposed by Stewart [4] for
the dynamic generation of strips. The suggested algorithms
show differences in generation and rendering speed, in the
use of memory or in the number of strips generated, which
make them more suitable for a specific use. It is also
important to comment on the studies which make optimum
use of the vertex cache. In this regard, methods such as
Hoppe’s [11] or the one devised by Nvidia [12] have
appeared in recent years. The company referenced before
has created its own library in order to find strips that derive
the maximum benefit from vertex caches and from the
spatial locality of vertex buffers.

Finally, mention should be made of the algorithm proposed
by Belmonte et al. [13], which, as the method presented in
this article, also considers the generation of strips
following a simplification criterion. But in this case, as in
the rest of the algorithms, the generation starting from the
maximum level of detail and its subsequent simplification
causes degeneration of the strips obtained at levels of low
detail.

2.2. Multiresolution methods based on strips

One of the first models to benefit from the triangle strip
primitive was the one presented by Hoppe [5], known as
Progressive Meshes and included in Microsoft’s DirectX
library. This model uses triangles during the change of the
level of detail but it constructs the strips before the
visualization. Later, El-Sana et al. [14] presented Skip
Strips model, which was the first model to maintain a data
structure to store the strips that avoided the need to
calculate them in real time. But this model still uses
triangles to adjust the geometry at each level of detail.

The MTS model [15] uses triangle strips both as the
storage and the visualization primitive. It consists of a set
of multiresolution strips, each of which represents a
triangle strip and all its levels of detail; only the ones that
are modified when changing the level of detail are updated
before being rendered. Some time later Dstrips [6]
appeared, which is a method that tries to maintain the strips
initially calculated, modifying the existing ones and
searching for new strips only when a specific zone of the
model requires it. Recently Lodstrips [16] has been also
presented, which uses triangle strips both in the data
structure and the visualization process. It is easy to
implement and it is efficient and fast in extracting the level
of detail, which enables soft transitions between the
different levels of detail to be achieved.

3. Our approach

The objective of the algorithm we present is to find triangle
strips that are optimum for multiresolution models. With
the method we propose, we intend to avoid the strips to be
cut when simplified.

With this intention, we start out with the mesh simplified to
the minimum level of detail, which means we may start
with just a few triangles. For every step of our algorithm
we will need to know the vertices that split, the two new
triangles that appear and the set of existing triangles that
must be modified. It is possible to collect all this
information during the simplification process of the
original mesh.

We can consider two main cases. The first of them, shown
in Figure 2, represents a refinement along a border edge
between two strips. In this situation, two triangles will be
modified and a total of four new vertices for two new
triangles will be inserted, as each strip will need a swap
operation.

Figure 2. Vertex split along a border edge between two strips.

In this way, following the example in Figure 2, strips will
be initially made up of vertices 1, 2, 3, 4 and 1, 5, 3, 6.
After the split, they will be made up of vertices 1, 2, 7, 2, 3,
4 and 1, 5, 7, 5, 3, 6. We should mention that it might be
possible to find this case with just one strip, this only being
possible if the strip includes a fan.

The second case can be observed in Figure 3. It shows a
split along an edge which is not a border. This makes it
impossible to add the two new triangles into the existing
strip without resorting to degenerated triangles that would
increase the number of vertices required. In this case it is
necessary to create a new strip, since we will be able to
insert only one of the new triangles into the existing strip.
The insertion of these two new triangles will involve a rise
of five units in the total number of vertices. Thus, the strip
that was initially made up of vertices 1, 2, 3, 4, 5, 6 will
now contain edges 1, 2, 3, 2, 7, 4, 5, 6 and a new strip will
appear with vertices 3, 7, 5.

Figure 3. Edge expansion along a non-border edge inside a strip.

With the two general cases introduced, the method to build
strips presented in this article will be similar to the one
presented in Algorithm 1. The two new triangles share an
edge with one of the triangles that will be modified, and it
will therefore be through this edge that we will locate the
triangle or triangles where we will be able to insert them.
Once the edge is found, we will simply insert the new
triangle taking care to choose the right side of the edge. If
we do not find that edge, we will be obliged to create a new
strip. Finally, we will always have to check that all the
modified triangles have been changed correctly. We must
respect all the changes implied in each step, since
otherwise we will not obtain the correct polygonal model
when we reach the maximum level of detail.

3.1. Optimizations

With the algorithm proposed, most steps involve the
insertion of four new vertices for the two new triangles.
These four insertions allow us to obtain a 30% saving with
respect to the three vertices per triangle that would be.

if find_edge() do
choose_side();
insert_triangle();

else do
create_strip();

check_modifications();
Algorithm 1. Strip generation algorithm.

necessary if we represented the model with a triangle mesh
To improve these results, the algorithm has been extended
so that, in each step, no repeated vertices or edges or
unnecessary edges are inserted. Furthermore, it is possible
to improve the results if, each time we must create a new
strip, we try to insert the new triangle at the end of an
already existing strip.

On many occasions we have no choice but to insert a new
triangle as a new strip. In successive iterations we may
have to add a new triangle next to this one. But, depending
on how we have inserted it, we will be able to do the new
insertion or not. This is due to the fact that, when inserting
a new triangle, one of its three edges will not be explicitly
reflected on the strip and then we will not be able to find it
in the search for edges in our algorithm. In order to avoid
this situation as many times as possible, we have
developed a function that predicts the usefulness of the
three edges. This prediction is carried out by following
their evolution throughout the remaining refinement steps.
With this information we will be able to decide which of
the three edges is less useful when it comes to inserting the
new triangle as a new strip. At this point, we have to
choose whether it is better to eliminate the edge that will be
used sooner, or the one that will be used later. Our
experiments have proven that penalizing the edge we will
use sooner offers better results, since it allows the new
triangles to be inserted into strips in the last steps of the
process.

4. Results

In order to analyze the strips generated as a result of the
algorithm presented here, we have conducted a study of the
vertices sent to the graphics card for different levels of
detail. These data have been compared with those obtained
using a simple triangle mesh for each level of detail and
with a multiresolution model based on strips that uses a
simplification method involving edge collapse, such as
Skip-Strips [14], MTS [15] or LodStrips [16]. The
experiments were carried out using Windows XP on a Dell
PC with a processor at 2.8 Ghz, 1 GB RAM and an Nvidia
GeForce 6600 graphics card with 256MB RAM.

Figures 4, 5 and 6 offer the obtained results for three
different polygonal models. They show the number of
vertices sent to the graphics processor for each level of
detail, considering 100% as the maximum detail and 0% as
the minimum, although in the tests 10% was taken as the
minimum since a lower level of detail would entail
complete loss of the original shape of the 3D model. It
should be pointed out that the information marked in the
figures with the name Triangles refers to a model that uses
triangle meshes, SMM is an abbreviation of strip-based
multiresolution model and Strips are the result of the
algorithm proposed in this article.

As we expected, this algorithm sends fewer vertices than a
triangle mesh. It can be observed that for high levels of
detail the example multiresolution model sends fewer
vertices. But if we consider the total number of vertices
necessary to go through all the levels of detail, from the
minimum to the maximum, our method involves less
information traffic, as shown in Table 1. In this way, for
more than 60% of the levels the algorithm presented sends
less geometric information to the GPU.

In Figure 7 the resulting stripification of the cow model
using our algorithm is presented. In addition to the strips
representing the model at maximum level of detail, two
more images taken during the process are also offered, for
a 33% and a 66% of the total detail.

5. Conclusions and future work

We have presented a new method for strips generation in
which we obtain a set of triangle strips that will maintain its
quality throughout the simplification process. We improve
on the results offered by previous stripification algorithms,
since all of them offer low quality for levels of coarser
detail. In contrast, our algorithm needs a larger number of
triangle strips at levels of high detail. But, in general, the
total number of vertices covering from the minimum to the
maximum level of detail is about 15% lower than the
multiresolution model ours was compared with and this
means a saving of around 50% with respect to the original
triangle mesh.

Figure 4. Results for the cow model.

Figure 5. Results for the Al Capone model.

Figure 6. Results for the bunny model.

 Triangles SMM Strips
Cow (5804 triangles) 25.272.930 (100%) 15.752.211 (62.3%) 13.777.800 (54.5%)
Al Capone (7124 triangles) 38.127.687 (100%) 23.158.015 (60.7%) 20.883.500 (54.7%)
Bunny (69451 triangles) 3.619.981.407 (100%) 2.163.219.828 (59.7%) 1.976.880.000 (54.6%)

Table 1. Results in total number of vertices sent going from the minimum to the maximum level of detail.

a)

b)

c)

Figure 7. Stripification of the cow model for a) 33% b) 66% and c)
100% of the maximum detail.

Through the results it can be observed how, as the level of
detail is reduced, the strips used by the multiresolution
model worsen, reaching a point near 20% of detail, where
it is even better to use the triangle mesh instead of the strips
the model offers. This lends further support to the idea that
has encouraged the investigation of this new algorithm,
which avoids working with low quality strips.

From the results obtained we can also infer that our design
loses quality as the models increase in size. In many
applications, such as games, it is usual to work with models
which are not as complex as the ones analyzed, where it is
easy to offset this low polygonal complexity with a correct

treatment of illumination or other aspects of the
visualization of geometry.

As a guideline in our future work, it would be interesting to
focus a subsequent study on decreasing the strips generated
for high levels of detail. In any case, we must also take into
account that the longest strips are not always better, as was
proved by Hoppe [11]. Thus, the correct management of
the vertex cache is a very important issue for possible
improvements in the algorithm. In the same way, we
consider that a significant improvement can be achieved by
utilizing a prediction system that better fits the evolution of
simplification, since this simple prediction method already
offers a 5% improvement in the number of vertices sent.
Finally, it would be interesting to combine the optimization
of both high and low levels of detail in the same search
method. With this aim, in future studies it would be
advisable to consider the search for strips starting from an
intermediate level of detail.

6. Acknowledgements

This work has been supported by the Spanish Ministry of
Science and Technology (TIN2004-07451-C03-03 and
FIT-350101-2004-15), the European Union
(IST-2-004363) and FEDER funds.

References:

[1] M. Garland, Multiresolution modeling: Survey &Future
opportunities, State of the Art Reports of
EUROGRAPHICS’99, 1999, 111-131.
[2] Funkhauser et al., Management of large amounts of data
in interactive building walkthroughs, Proceedings of the
1992 symposium on Interactive 3D graphics, 11-20.
[3] J. Ribelles, A. López, O. Belmonte, I. Remolar, M.
Chover, Multiresolution modeling of arbitrary polygonal
surfaces: a characterization, Computers & Graphics, 26(3),
ISSN 0097-8493, 2002, 449-462.
[4] J. Stewart, Tunneling for Triangle Strips in Continuous
Level-of-Detail Meshes, Graphics Interface, 2001,
91-100.
[5] H. Hoppe, Progressive messhes, ACM SIGGRAPH
1996, 99-108.
[6] M. Shafae, R. Pajarola, Dstrips: Dynamic Triangle
Strips for Real-Time Mesh Simplification and Rendering,
Proceedings Pacific Graphics Conference 2003.
[7] F. Evans, S. Skiena, A. Varshney, Efficiently
generating triangle strips for fast rendering, Technical
report, Department of Computer Science, State University
of New York at Stony Brook, Stony Brook, NY, USA, 1997
11794-4400.
[8] F. Evans, S. Skiena, A. Varshney, Optimising Triangle
Strips for Fast Rendering, IEEE Visualization’96, 1996,
319-326. http://www.cs.sunysb.edu/~stripe

[9] K. Akeley, P. Haeberli, D. Burns, tomesh.c: C Program
on SGI Developer’s Toolbox CD, 1990.
[10] X. Xiang, M. Held, P. Mitchell, Fast and Effective
Stripification of Polygonal Surface Models, SODA:
ACM-SIAM Symposium on Discrete Algorithms, 1998.
[11] H. Hoppe, Optimization of Mesh Locality for
Transparent Vertex Caching, ACM SIGGRAPH 1999,
269-276.
[12] C. Beeson, J. Demer, Nvtristrip, library version,
Software available via Internet website.
http://developer.nvidia.com/view.asp?IO=nvtristrip_libra
ry. January 2002.
[13] O. Belmonte, J. Ribelles, I. Remolar, M. Chover,
Búsqueda de tiras de triángulos guiadas por un criterio de
simplificación, Actas del X Congreso Español de
Informática Gráfica (CEIG 2000), ISBN/ISSN 84-8021-
314-0, Spain, 51-64.

[14] J. El-sana et al., Skip Strips: Maintaining Triangle
Strips for View-dependent Rendering, Proceedings of
Visualization 99, 131-137.
[15] O. Belmonte, I. Remolar, J. Ribelles, M. Chover, M.
Fernández, C. Rebollo, Multiresolution Triangle Strips.
Proc. of Visualization, Imaging and Image Processing
(VIIP 2001), ISBN/ISSN 0-88986-309-1, Spain, 182-187.
[16] F. Ramos, M. Chover, LodStrips, Lecture notes in
Computer Science, Proc. of Computational Science ICCS
2004, Springer, ISBN/ISSN 3-540-22129-8, Krakow
(Poland), vol. 3039, 107-114.

