

EFFICIENT IMPLEMENTATION OF LODSTRIPS

Francisco Ramos, Miguel Chover, Oscar Ripolles, Carlos Granell

Departamento de Lenguajes y Sistemas Informáticos
Universitat Jaume I, Campus de Riu Sec, 12071, Castellón, Spain

{Francisco.Ramos, chover, oripolle, Carlos.Granell}@uji.es

ABSTRACT
In earlier work, we introduced LodStrips, a new
multiresolution model for fast visualisation of polygonal
meshes. This model was based on triangle strips and it
defined a continuous sequence of level-of-detail managed
on demand. In this paper, we present new data structures
and algorithms for efficient implementation of the
LodStrips model and its applications. This
implementation is based on GPU characteristics and
results demonstrate noticeable improvements in spatial
and rendering costs.

KEY WORDS
Real-time graphics, 3D modelling, level of detail,
multiresolution, triangle strips.

1. Introduction

One of the main problems of interactive graphic
applications, such as computer games or virtual reality, is
the geometric complexity of the scenes they represent. In
order to solve this problem, different techniques for
modelling by level of detail have been developed that
attempt to adapt the number of polygons of the objects to
their importance within the scene. According to [1], we
can distinguish between discrete and continuous models.
Discrete models typically store a few LODs and tend to
suffer from popping artifacts when a LOD is changed.
Continuous multiresolution models are more exact and
two consecutive LODs differ by only a few triangles.

In previous work [2], we introduced a new continuous
multiresolution model that improved existing solutions.
LodStrips consists of an arbitrary mesh Mn and a set of n
records that indicate how to simplify it. Each record
encodes the information that enable us to modify the
mesh according to the LOD required.

Following the same philosophy of the original paper [2],
we present new data structures and algorithms allowing
the efficient implementation of LodStrips. This
implementation is adapted to the graphics hardware and it
reduces the spatial cost and accelerates rendering. Results
show the performance with some models and in
applications, as shown in figure 1 and figure 2.

The paper is organized as follows. In section 2, we revise
some related work. The LodStrips model is reviewed in
section 3. Section 4 describes the technical background of
the model and section 5 our basic data structures. Section
6 explains the process of traversing the levels of detail in
a LodStrips mesh. Finally, section 7 shows
implementation results and section 8 summarizes the
paper.

Figure 1. Efficient implementation of LodStrips in a computer game
engine: Ogre3D.

2. Related Work

In recent years, multiresolution models have progressed
substantially. At the beginning, discrete models were
employed in graphics applications, due mainly to the low
degree of complexity involved in implementing them,
which is the reason why nowadays they are still used in
applications without high graphics requirements.
Nevertheless, the increase in realism in graphics
applications makes it necessary to use multiresolution
models which are more exact in their approximations,
which do not call for high storage costs and which are
faster in visualization. This has given way to continuous
models, where two consecutive levels of detail only differ
by a few polygons and where, additionally, the
duplication of information is avoided to a considerable
extent, thus improving on the spatial cost offered by the
discrete models.

The best known continuous multiresolution model is
Progressive Meshes [3], included in Microsoft
Corporation's graphic library DirectX. This model offers
excellent results in visualization in real time, although it is
based on triangle primitives.

Advances have been made in the use of new graphics
primitives which minimize the data transfer between the
CPU and the GPU, apart from trying to make use of the
connectivity information given by a polygonal mesh. For
this purpose, graphics primitives with implicit
connectivity, such as triangle strips and triangle fans, have
been developed. Many continuous models based on this
type of primitives have been recently developed [2][4-7].
In these last few years, graphics hardware performance
has evolved outstandingly, giving rise to new techniques
which allow the continuous models to accelerate even
more. The use of stripification algorithms, which try to
take the maximum advantage of the GPU cache[12][13],
and the new extensions of graphics libraries [14] that
allow visualization of a whole mesh with only a few
instructions are examples of these new techniques.

3. Review of LodStrips

This multiresolution model represents a mesh as a set of
multiresolution strips. Let M be the original polygonal
surface and Mr its multiresolution representation. Mr can
be defined as:

Mr = { V, S } (1)

where V is the set of all the vertices and S the triangle
strips used to represent any resolution. We can express S
as a tuple {S0,C}, where S0 consists of the set of triangle
strips at the highest level of detail and C is the set of
simplifications required to refine them.

110
210 ... −⎯⎯ →⎯⎯→⎯⎯→⎯ −

n
CCC SSS n (2)

In particular, we will consider every simplification in its
minimal expression, that is, one simplification implies a
vertex collapse. Moreover, we arrange simplifications in
such manner that simplification i means collapsing the
vertex i. Thus, to build S with its n levels of detail, we
apply n-1 iterations of a progressive simplification
method. Each simplification Ci generates a new level of
detail Si+1, where 0<i<n-1 and it may be represent by the
tuple {vf’i, S’i} where vf’i is the vertex where collapses
the vertex i, and S’i is the subset of strips modified by this
collapse.

4. Technical Background

Various algorithms were used to build the model: an
algorithm to obtain a sequence of edge-collapses from the

highest level of detail to the lowest and an algorithm to
construct efficient triangle strips.

In order to obtain a sequence of edge-collapses, we apply
the QSLIM algorithm[8], it is based on the iterative
contraction of vertex pairs, a generalization of edge
contraction. It produces simplified versions of polygonal
models. In this manner, this information is stored into the
model data structures, as shown in section 4, allowing
transitions among levels of detail.

The model presented is wholly based on triangle strips,
which are generated from a polygonal model at the
highest level of detail. NvTriStrip [9] utility is used with
the purpose of maximizing vertex reuse when rendering a
mesh, but it has a limitation of indices at 16 bits; hence
Stripe utility [10] is applied to large models.

Information about simplification and triangle strips at the
highest level of detail is saved into the model data
structures. Later, information about changes to manage
level of detail, is also calculated and stored.

a)

b)

Figure 2. Buda model. At the highest level of detail: 543644 vertices

and 31596 triangle strips. a) The lowest level of detail: 5438 vertices. b)
Strips at the lowest level of detail.

5. Data Structures

To display a polygonal mesh at the highest level of detail
only two basic data structures are required: Vertices and
Strips. Vertices stores the 3D coordinates for each vertex
on the mesh and Strips stores the mentioned mesh , that
is, a set of strips, where each strip contains a set of indices
to the vertex, in Vertices, which refers to.

To change the level of detail, we also need to store the
vertex that will be collapsed for each LOD. That
information is obtained from a pre-process. Thus, for each
vertex in the Vertices data structure we also store the
vertex where the collapse will take place.

Moreover, in order to avoid the problem of having to
search the vertex to be collapsed in each strip, we first
store the strip that changes in the data structures and then
store the exact position of the vertex to be collapsed in
that triangle strip.

However, an accumulation of identical vertices is
produced as the model moves towards coarser LODs.
Sending these vertex repetitions to the graphics hardware
does not contribute to the final scene at all. This problem
is solved by detecting those patterns before rendering,
avoiding the application of filters in visualisation. Thus,
we have proven that most vertex repetitions follow
patterns like aa(a)+ or ab(ab)+, where a and b are
vertices of the model. Patterns aa(a)+ are replaced by aa,
and ab(ab)+ by ab.

Figure 3 shows main LodStrips data structures in a C++
implementation.

struct Vertex {
 Point point; //(x,y,z) coordinates
 int Collapse; //index to the vertex to collapse
};

struct Strip {
 int *indices; //indices to Vertices
};

struct RecordChange {
 int strip; //strip affected by one change
 int #collapses; //number of collapses to apply
 int #resizes; //number of resizes to apply
 int *data; //positions, in the strip, where
 //collapses and resizes take place
};

struct Change {
 int #StripsAffected; //number of records
 RecordChange *Records; //array of records to apply
};

struct LodStripsMesh {
 Array<Vertex> Vertices; //vertices of the mesh
 Array<Strip> Strips; //triangle strips of the
mesh
 Array<Change> Changes; //Records to change the
mesh
};

Figure 3. LodStrips data structures.

In figure 4 we can observe the simple process to fill those
data structures. First of all, we have the strips at the
highest level of detail and, from the simplification, we
know where collapses every vertex. We start from LOD 0
and, we collapse vertex 0 to vertex 3, the result is the strip
3 2 3 1 5 4, which has no repetitions, and therefore, no
resizes. Finally, we fill Change data structure with 1 strip
affected by this collapse and a pointer to the
RecordChange data structure, which contains the strip
affected, in this case 0 and, only 1 collapse and 0 resizes.
In the data data structure we have the position where the
collapse takes place in the strip, that is 0. The process

continues in the same fashion though every level of detail.
Thus, we fill data structures by collapsing vertices and
removing repetitions, as shown in that figure, where we
calculate transitions to three levels of detail.

6. Level of Detail Management

Management of level of detail implies two essential tasks
in multiresolution modelling: extraction of the LOD
required and visualisation of the resultant geometry.

6.1 Updating Geometry

Updating geometry means adapt LodStrips meshes to a
desired level of detail of complexity, Figure 5 shows
different levels of detail from a model.

4

1
2

0

3 5

Vertex 0 Collapses To 3

Strip 0: 0 2 3 1 5 4

4

1
2

3 5

Vertex 1 Collapses To 2

Strip 0: 3 2 3 1 5 4

Vertex 2 Collapses To 3

Strip 0: 3 2 5 4

42

3 5

Vertices: 0 1 2 3 4 5
CollapsesTo: 3 2 3 - - -

Strip 0: 3 2 3 1 5 4

Strip 0: 3 2 3 2 5 4

1

Strips

Affected

*0

Change

Records

Lod

1

Strips

Affected

*0

Change

Records

Lod

0

#resizes

*10

#collapses Datastrip

0

#resizes

*10

#collapses Datastrip

Data

Strip 0: 3 3 5 4

Strip 0: 3 5 4

4

3 5

*11

1

Strips

Affected

*0

Change

Records

Lod

*11

1

Strips

Affected

*0

Change

Records

Lod

*111

0

#resizes

*10

#collapses Datastrip

*111

0

#resizes

*10

#collapses Datastrip

0 3 1

*12

*11

1

Strips

Affected

*0

Change

Records

Lod

*12

*11

1

Strips

Affected

*0

Change

Records

Lod

*110

*110

0

#resizes

*10

#collapses Datastrip

*110

*110

0

#resizes

*10

#collapses Datastrip

0 3 1 1 1

0

Data

Data

Figure 4. Construction of LodStrips data structures.

6.2 Rendering

In the model, triangle strips are changing as much as
change the LOD required by applications. Therefore, a
data structure to manage strips, with fast constant time

insertions and deletions is required. On the other hand,
access time to these type of data structures is penalized.
Our model implements an array of displayed strips, where
access is very fast. Thus, if no LOD is required, the mesh
is rendered with the highest performance possible, and if a
change of LOD is demanded, this array is updated only
for those strips modified.

In an implemented view, triangle strips has two
representations, on the one hand, hwStrips, which
contains the strips at the current LOD, and, on the other
hand, disStrips, which contains the same as hwStrips but
with a hardware-oriented implementation. Thus, if an
application maintains the LOD, disStrips offers the
maximum performance. When a change of LOD is
processed, all display strips affected are updated. It is
easily managed by a dirty flag.

LOD 1 LOD 0.5 LOD 0

Figure 5. Three levels of detail from the Al Capone model..

7. Results

This model was submitted to several tests, all of which
were aimed at evaluating the rendering time in a real-time
application by applying different acceleration techniques.
Tests designed to compare multiresolution models follow
the ones introduced by [11] and the one carried out in this
study was the linear test: this consists in extracting the
LODs of the model in a linear and proportionately
increasing or decreasing way.

To carry out the tests, three well-known meshes from the
Stanford 3D Scanning Repository were taken as a
reference, so as to make it easy to compare this model
with other well-developed models.

Test were carried out using a PC with an Intel Pentium
Xeon 2.8 GHz processor, 1024 Mb RAM and a NVIDIA
GeForce FX 6600 256 Mb graphics card. C++ was
employed for the implementation, using the graphics
library OpenGL, and it is completely portable.

All these tests were carried out in order to evaluate the
different acceleration techniques. Initially, utilisation of
coherence was evaluated, later; hardware acceleration
techniques were compared, by applying the immediate
mode, vertex array mode and the OpenGL extension:

vertex buffer objects with glDrawRangeElements and
glMutiDrawElements. After that, the effect of utilising
cache reutilisation techniques was tested with the
NvTriStrip library, which creates cache-optimised triangle
strips and then compared to the Stripe utility and finally, a
comparison to some well-know multiresolution models
was obtained and compared.

7.1 Multiresolution Models Comparison

Table 1 shows a comparison of rendering and storage of
different well-know multiresolution models, this
information has been taken from the implemented models
and they are compared to our efficient implementation.
We can observe an improvement of around a 30% when
compared to the original LodStrips. Moreover, we can
observe how rendering is even faster in immediate mode.

Model
Render
(ms)

Spatial
Cost (Mb) #ratio

Skip Strips 3.56 4.36 2.83
MTS 4.37 7.55 4.90
LodStrips 2.43 4.30 2.79
Efficient 2.07 3.20 2.08
Vertices+Strips 1.54 1.00

Table 1. Render and spatial cost comparison of multiresolution models
(MTS[6], SkipStrips[4] and LodStrips[2]) for the bunny model. Render
column consist of the time to extract LODs in a linear way plus the time

for visualising the result in OpenGL immediate mode. Ratio column
shows how many original meshes fits into the strips model at the highest

level of detail..

7.2 Spatial Cost

In table 2 we can observe the spatial cost for some
models. It is important to underline the storage obtained
with large models.

Model Vertices
Original

Model (Mb)
Spatial

Cost (Mb)
Cow 2904 0.13 0.31
Bunny 34834 1.54 3.20
Dragon 54296 2.39 6.01
Buda 543644 24.11 49.83

Table 2.Spatial cost data.

7.3 Stripification Techniques

The NVTriStrip library was unable to generate strips for
the happy buddha object. It is due to a limitation of the
library, which can not manage objects which exceed
35635 indices. However, by using Stripe, the model can
be loaded and managed by the efficient implementation
with 30 fps in the worst case, by using vertex buffer
objects (extension DrawRangeElements) technique, as
shown in figure 6. With MultiDraw extension we
obtained 70 fps at the highest level of detail.

7.4 Hardware Acceleration

The results of the hardware acceleration tests are shown
in figures 7 and 8; on the left side we can see an image of
the object with strips, while on the right side and in the
upper part of the table, some data about characteristics of
the model are shown. In the lower part the total rendering
time is shown first, and after that the table shows the
percentage of this time used in extracting the level of
detail and in drawing the resulting mesh.

As can be seen in these figures, the performance of the
model grows exponentially when a hardware acceleration
technique is applied. By applying both acceleration
techniques and the immediate mode we obtain a
significant improvement in performance.
It is important to underline the suitability of the model for
applying hardware acceleration techniques. This model
spends a small percentage of time on extracting the level
of detail, which leads to good rendering times due to the
lower extraction times and, moreover, it benefits the
application of those techniques.

8. Conclusions and Future Work

We have described an efficient implementation of the
LodStrips model introduced in earlier work. Efficient data
structures and algorithms permit fast iteration through the
LodStrips approximations.
Spatial cost has been improved, as well as rendering times
and the model has been successfully implemented in a
computer game engine: Ogre3D. Moreover, the efficiency
of the geometric acceleration techniques was tested on
this implementation. To verify the increase in
performance, a series of tests, besides to some
acceleration techniques, were carried out to evaluate the
ability of the model to manage the changes in the level of
detail.
One of the most important conclusions that must be
highlighted is that this implementation shows a total
integration with GPU. Hardware acceleration techniques
allow us to increase the performance of the models with
dynamic geometry. In this sense, the model noticeably
increased its performance. This rise is mainly due to the
optimised design of the model for the hardware, where
level of detail extraction times are very low and so
graphic acceleration is greatly benefited.
Moreover, cache reutilisation techniques have shown
good rendering times when cache-optimised triangle
strips, generated from the NvTriStrip library, have been
utilised, although improvements, in this way, are required
in order to manage multiresolution schemes.

References

[1] J. Ribelles, A. López, Ó. Belmonte, I. Remolar, M.
Chover, Multiresolution modeling of arbitrary polygonal

surfaces: a characterization, Computers & Graphics, vol.
26, n.3 2002.
[2] F. Ramos, M. Chover, LodStrips, Lecture notes in
Computer Science, Proc. of Computational Science ICCS
2004, Springer, ISBN/ISSN 3-540-22129-8, Krakow
(Poland), vol. 3039, pp. 107-114, June, 2004.
[3] Hoppe H. Progressive Meshes. Computer Graphics
(SIGGRAPH), v. 30:99-108, 1996.
[4] El-Sana J, Azanli E, Varshney A. Skip strips:
maintaining triangle strips for view-dependent rendering.
In: Proceedings of Visualization 99, 1999. p.131-137
[5] Michael Shafae, Renato Pajarola. DStrips: Dynamic
Triangle Strips for Real-Time Mesh Simplification and
Rendering. Proceedings Pacific Graphics Conference,
2003.
[6] O. Belmonte, I. Remolar, J. Ribelles, M. Chover, M.
Fernández. Efficient Use Connectivity Information
between Triangles in a Mesh for Real-Time Rendering,
Future Generation Computer Systems, Special issue on
Computer Graphics and Geometric Modeling, 2003. ISSN
0167-739X.
[7] A. James Stewart: Tunneling for Triangle Strips in
Continuous Level-of-Detail Meshes. Graphics Interface
2001: 91-100.
[8] M. Garland and P. Heckbert. Surface simplification
using quadric error metrics. In Proceedings of
SIGGRAPH ’97 (Los Angeles, CA), Computer Graphics
Proceedings, Annual Conference Series, pages 209 – 216.
ACM SIGGRAPH, ACM Press, August 1997.
[9] NvTriStrip Library, NVIDIA Corporation (2002).
Available in Internet at following URL
http://developer.nvidia.com/object/
nvtristrip_library.html.
[10] F. Evans, S. Skiena and A. Varshney, Optimising
Triangle Strips for Fast Rendering, IEEE Visualization
’96, 319-326, 1996. http://www.cs.sunysb.edu/~stripe.
[11] J. Ribelles, M. Chover, A. Lopez and J. Huerta. A
First Step to Evaluate and Compare Multiresolution
Models, Short Papers and Demos EUROGRAPHICS’99,
230-232, 1999.
[12] A. Bogomjakov, C. Gostman. Universal Rendering
Sequences for Transparent Vertex Caching of Progressive
Meshes. Proceedings of Graphics Interface 2001.
[13] H. Hoppe, “Optimization of Mesh Locality for
Transparent Vertex Caching”, ACM SIGGRAPH 1999,
pp. 269-276.
[14] Silicon Graphics, “Vertex Buffer Object
Specification”, 2003, http://oss.sgi.com /projects /ogl-
sample /registry /ARB/vertex_buffer_object.txt.

0

10

20

30

40

50

60

70

80

1 0

Level of Detail

Fr
am

es
 p

er
 S

ec
on

d
VBO

VA

Figure 6. OpenGL DrawRangeElements and vertex array results obtained from the happy buddha object with strips generated from the Stripe utility.

Vertices Strips Storage
34834 6194 3.9 Mb

% rec % drw

0.19 99.81

0.68 99.32

1.26 98.74

Bunny object

Test Hardware Technique
Render (ms)

Linear
Test

Immediate Mode
2.064565

VBO: DrawRange
0.519380

VBO: MultiDraw
0.250492

Figure 7. Results obtained from the bunny model by applying hardware acceleration techniques.

Vertices Strips Storage
54296 8799 6.0 Mb

% rec % drw

0.11 99.89

0.52 99.48

1.03 98.97

Linear
Test

Immediate Mode
3.638561

VBO: DrawRange
0.734888

VBO: MultiDraw
0.370881

Dragon object

Test Hardware Technique
Render (ms)

Figure 8. Results obtained from the dragon model by applying hardware acceleration techniques.

