
 
 
 

EFFICIENT IMPLEMENTATION OF LODSTRIPS 
 

 
Francisco Ramos, Miguel Chover, Oscar Ripolles, Carlos Granell 

Departamento de Lenguajes y Sistemas Informáticos 
Universitat Jaume I, Campus de Riu Sec, 12071, Castellón, Spain 

{Francisco.Ramos, chover, oripolle, Carlos.Granell}@uji.es 
 
 

ABSTRACT 
In earlier work, we introduced LodStrips, a new 
multiresolution model for fast visualisation of polygonal 
meshes. This model was based on triangle strips and it 
defined a continuous sequence of level-of-detail managed 
on demand. In this paper, we present new data structures 
and algorithms for efficient implementation of the 
LodStrips model and its applications. This 
implementation is based on GPU characteristics and 
results demonstrate noticeable improvements in spatial 
and rendering costs. 
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1.  Introduction 
 
One of the main problems of interactive graphic 
applications, such as computer games or virtual reality, is 
the geometric complexity of the scenes they represent. In 
order to solve this problem, different techniques for 
modelling by level of detail have been developed that 
attempt to adapt the number of polygons of the objects to 
their importance within the scene. According to [1], we 
can distinguish between discrete and continuous models. 
Discrete models typically store a few LODs and tend to 
suffer from popping artifacts when a LOD is changed. 
Continuous multiresolution models are more exact and 
two consecutive LODs differ by only a few triangles. 
 
In previous work [2], we introduced a new continuous 
multiresolution model that improved existing solutions. 
LodStrips consists of an arbitrary mesh Mn and a set of n 
records that indicate how to simplify it. Each record 
encodes the information that enable us to modify the 
mesh according to the LOD required. 
 
Following the same philosophy of the original paper [2], 
we present new data structures and algorithms allowing 
the efficient implementation of LodStrips. This 
implementation is adapted to the graphics hardware and it 
reduces the spatial cost and accelerates rendering. Results 
show the performance with some models and in 
applications, as shown in figure 1 and figure 2. 

The paper is organized as follows. In section 2, we revise 
some related work. The LodStrips model is reviewed in 
section 3. Section 4 describes the technical background of 
the model and section 5 our basic data structures. Section 
6 explains the process of traversing the levels of detail in 
a LodStrips mesh. Finally, section 7 shows 
implementation results and section 8 summarizes the 
paper. 
 

 
 

Figure 1. Efficient implementation of LodStrips in a computer game 
engine: Ogre3D. 

 
2.  Related Work 
 
In recent years, multiresolution models have progressed 
substantially. At the beginning, discrete models were 
employed in graphics applications, due mainly to the low 
degree of complexity involved in implementing them, 
which is the reason why nowadays they are still used in 
applications without high graphics requirements. 
Nevertheless, the increase in realism in graphics 
applications makes it necessary to use multiresolution 
models which are more exact in their approximations, 
which do not call for high storage costs and which are 
faster in visualization. This has given way to continuous 
models, where two consecutive levels of detail only differ 
by a few polygons and where, additionally, the 
duplication of information is avoided to a considerable 
extent, thus improving on the spatial cost offered by the 
discrete models. 
 



The best known continuous multiresolution model is 
Progressive Meshes [3], included in Microsoft 
Corporation's graphic library DirectX. This model offers 
excellent results in visualization in real time, although it is 
based on triangle primitives. 
 
Advances have been made in the use of new graphics 
primitives which minimize the data transfer between the 
CPU and the GPU, apart from trying to make use of the 
connectivity information given by a polygonal mesh. For 
this purpose, graphics primitives with implicit 
connectivity, such as triangle strips and triangle fans, have 
been developed. Many continuous models based on this 
type of primitives have been recently developed [2][4-7]. 
In these last few years, graphics hardware performance 
has evolved outstandingly, giving rise to new techniques 
which allow the continuous models to accelerate even 
more. The use of stripification algorithms, which try to 
take the maximum advantage of the GPU cache[12][13], 
and the new extensions of graphics libraries [14] that 
allow visualization of a whole mesh with only a few 
instructions are examples of these new techniques. 
 
3.  Review of LodStrips 
 
This multiresolution model represents a mesh as a set of 
multiresolution strips. Let M be the original polygonal 
surface and Mr its multiresolution representation. Mr can 
be defined as: 
 

Mr = { V, S } (1) 

 
where V is the set of all the vertices and S the triangle 
strips used to represent any resolution. We can express S 
as a tuple {S0,C}, where S0 consists of the set of triangle 
strips at the highest level of detail and C is the set of 
simplifications required to refine them. 
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In particular, we will consider every simplification in its 
minimal expression, that is, one simplification implies a 
vertex collapse. Moreover, we arrange simplifications in 
such manner that simplification i means collapsing the 
vertex i. Thus, to build S with its n levels of detail, we 
apply n-1 iterations of a progressive simplification 
method. Each simplification Ci generates a new level of 
detail Si+1, where 0<i<n-1 and it may be represent by the 
tuple {vf’i, S’i} where vf’i  is the vertex where collapses 
the vertex i, and S’i is the subset of strips modified by this 
collapse. 
 
4.  Technical Background 
 
Various algorithms were used to build the model: an 
algorithm to obtain a sequence of edge-collapses from the 

highest level of detail to the lowest and an algorithm to 
construct efficient triangle strips. 
 
In order to obtain a sequence of edge-collapses, we apply 
the QSLIM algorithm[8], it is based on the iterative 
contraction of vertex pairs, a generalization of edge 
contraction. It produces simplified versions of polygonal 
models. In this manner, this information is stored into the 
model data structures, as shown in section 4, allowing 
transitions among levels of detail. 
 
The model presented is wholly based on triangle strips, 
which are generated from a polygonal model at the 
highest level of detail. NvTriStrip [9] utility is used with 
the purpose of maximizing vertex reuse when rendering a 
mesh, but it has a limitation of indices at 16 bits; hence 
Stripe utility [10] is applied to large models. 
 
Information about simplification and triangle strips at the 
highest level of detail is saved into the model data 
structures. Later, information about changes to manage 
level of detail, is also calculated and stored. 
 

 
a) 

 
b) 

 
Figure 2. Buda model. At the highest level of detail: 543644 vertices 

and 31596 triangle strips. a) The lowest level of detail: 5438 vertices. b) 
Strips at the lowest level of detail. 

 
5.  Data Structures 
 
To display a polygonal mesh at the highest level of detail 
only two basic data structures are required: Vertices and 
Strips. Vertices stores the 3D coordinates for each vertex 
on the mesh and Strips stores the mentioned mesh , that 
is, a set of strips, where each strip contains a set of indices 
to the vertex, in Vertices, which refers to. 
 



To change the level of detail, we also need to store the 
vertex that will be collapsed for each LOD. That 
information is obtained from a pre-process. Thus, for each 
vertex in the Vertices data structure we also store the 
vertex where the collapse will take place. 
 
Moreover, in order to avoid the problem of having to 
search the vertex to be collapsed in each strip, we first 
store the strip that changes in the data structures and then 
store the exact position of the vertex to be collapsed in 
that triangle strip. 
 
However, an accumulation of identical vertices is 
produced as the model moves towards coarser LODs. 
Sending these vertex repetitions to the graphics hardware 
does not contribute to the final scene at all. This problem 
is solved by detecting those patterns before rendering, 
avoiding the application of filters in visualisation. Thus, 
we have proven that most vertex repetitions follow 
patterns like aa(a)+ or ab(ab)+, where a and b are 
vertices of the model. Patterns aa(a)+ are replaced by aa, 
and ab(ab)+ by ab. 
 
Figure 3 shows main LodStrips data structures in a C++ 
implementation. 
 
 
struct Vertex { 
 Point point;  //(x,y,z) coordinates 
 int Collapse; //index to the vertex to collapse 
}; 
 
struct Strip { 
 int *indices;  //indices to Vertices 
}; 
 
struct RecordChange { 
 int strip; //strip affected by one change 
 int #collapses; //number of collapses to apply 
 int #resizes; //number of resizes to apply 
 int *data; //positions, in the strip, where 
   //collapses and resizes take place 
}; 
 
struct Change { 
 int #StripsAffected;   //number of records  
 RecordChange *Records; //array of records to apply 
}; 
 
struct LodStripsMesh { 
 Array<Vertex> Vertices; //vertices of the mesh 
 Array<Strip> Strips; //triangle strips of the 
mesh 
 Array<Change> Changes;   //Records to change the 
mesh 
}; 

Figure 3. LodStrips data structures. 
 
 
In figure 4 we can observe the simple process to fill those 
data structures. First of all, we have the strips at the 
highest level of detail and, from the simplification, we 
know where collapses every vertex. We start from LOD 0 
and, we collapse vertex 0 to vertex 3, the result is the strip 
3 2 3 1 5 4, which has no repetitions, and therefore, no 
resizes. Finally, we fill Change data structure with 1 strip 
affected by this collapse and a pointer to the 
RecordChange data structure, which contains the strip 
affected, in this case 0 and, only 1 collapse and 0 resizes. 
In the data data structure we have the position where the 
collapse takes place in the strip, that is 0. The process 

continues in the same fashion though every level of detail. 
Thus, we fill data structures by collapsing vertices and 
removing repetitions, as shown in that figure, where we 
calculate transitions to three levels of detail. 
 
 
 
6.  Level of Detail Management 
 
Management of level of detail implies two essential tasks 
in multiresolution modelling: extraction of the LOD 
required and visualisation of the resultant geometry. 
 
6.1 Updating Geometry 
 
Updating geometry means adapt LodStrips meshes to a 
desired level of detail of complexity, Figure 5 shows 
different levels of detail from a model. 
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Figure 4. Construction of LodStrips data structures. 
 
 
6.2 Rendering 
 
In the model, triangle strips are changing as much as 
change the LOD required by applications. Therefore, a 
data structure to manage strips, with fast constant time 



insertions and deletions is required. On the other hand, 
access time to these type of data structures is penalized. 
Our model implements an array of displayed strips, where 
access is very fast. Thus, if no LOD is required, the mesh 
is rendered with the highest performance possible, and if a 
change of LOD is demanded, this array is updated only 
for those strips modified. 
 
In an implemented view, triangle strips has two 
representations, on the one hand, hwStrips, which 
contains the strips at the current LOD, and, on the other 
hand, disStrips, which contains the same as hwStrips but 
with a hardware-oriented implementation. Thus, if an 
application maintains the LOD, disStrips offers the 
maximum performance. When a change of LOD is 
processed, all display strips affected are updated. It is 
easily managed by a dirty flag. 
 
 

  
LOD 1 LOD 0.5 LOD 0 

 
Figure 5. Three levels of detail from the Al Capone model.. 

 
 
7.  Results 
 
This model was submitted to several tests, all of which 
were aimed at evaluating the rendering time in a real-time 
application by applying different acceleration techniques. 
Tests designed to compare multiresolution models follow 
the ones introduced by [11] and the one carried out in this 
study was the linear test: this consists in extracting the 
LODs of the model in a linear and proportionately 
increasing or decreasing way. 
 
To carry out the tests, three well-known meshes from the 
Stanford 3D Scanning Repository were taken as a 
reference, so as to make it easy to compare this model 
with other well-developed models. 
 
Test were carried out using a PC with an Intel Pentium 
Xeon 2.8 GHz processor, 1024 Mb RAM and a NVIDIA 
GeForce FX 6600 256 Mb graphics card. C++ was 
employed for the implementation, using the graphics 
library OpenGL, and it is completely portable. 
 
All these tests were carried out in order to evaluate the 
different acceleration techniques. Initially, utilisation of 
coherence was evaluated, later; hardware acceleration 
techniques were compared, by applying the immediate 
mode, vertex array mode and the OpenGL extension: 

vertex buffer objects with glDrawRangeElements and 
glMutiDrawElements. After that, the effect of utilising 
cache reutilisation techniques was tested with the 
NvTriStrip library, which creates cache-optimised triangle 
strips and then compared to the Stripe utility and finally, a 
comparison to some well-know multiresolution models 
was obtained and compared. 
 
7.1 Multiresolution Models Comparison 
 
Table 1 shows a comparison of rendering and storage of 
different well-know multiresolution models, this 
information has been taken from the implemented models 
and they are compared to our efficient implementation. 
We can observe an improvement of around a 30% when 
compared to the original LodStrips. Moreover, we can 
observe how rendering is even faster in immediate mode. 
 

Model
Render 
(ms)

Spatial 
Cost (Mb) #ratio

Skip Strips 3.56 4.36 2.83
MTS 4.37 7.55 4.90
LodStrips 2.43 4.30 2.79
Efficient 2.07 3.20 2.08
Vertices+Strips 1.54 1.00  

 
Table 1. Render and spatial cost comparison of multiresolution models 
(MTS[6], SkipStrips[4] and LodStrips[2]) for the bunny model. Render 
column consist of the time to extract LODs in a linear way plus the time 

for visualising the result in OpenGL immediate mode. Ratio column 
shows how many original meshes fits into the strips model at the highest 

level of detail.. 
 
7.2 Spatial Cost 
 
In table 2 we can observe the spatial cost for some 
models. It is important to underline the storage obtained 
with large models. 

 

Model Vertices
Original 

Model (Mb)
Spatial 

Cost (Mb)
Cow 2904 0.13 0.31
Bunny 34834 1.54 3.20
Dragon 54296 2.39 6.01
Buda 543644 24.11 49.83  

 
Table 2.Spatial cost data. 

 
 
7.3 Stripification Techniques 
 
The NVTriStrip library was unable to generate strips for 
the happy buddha object. It is due to a limitation of the 
library, which can not manage objects which exceed 
35635 indices. However, by using Stripe, the model can 
be loaded and managed by the efficient implementation 
with 30 fps in the worst case, by using vertex buffer 
objects (extension DrawRangeElements) technique, as 
shown in figure 6. With MultiDraw extension we 
obtained 70 fps at the highest level of detail. 
 



7.4 Hardware Acceleration 
 
The results of the hardware acceleration tests are shown 
in figures 7 and 8; on the left side we can see an image of 
the object with strips, while on the right side and in the 
upper part of the table, some data about characteristics of 
the model are shown. In the lower part the total rendering 
time is shown first, and after that the table shows the 
percentage of this time used in extracting the level of 
detail and in drawing the resulting mesh. 
 
As can be seen in these figures, the performance of the 
model grows exponentially when a hardware acceleration 
technique is applied. By applying both acceleration 
techniques and the immediate mode we obtain a 
significant improvement in performance. 
It is important to underline the suitability of the model for 
applying hardware acceleration techniques. This model 
spends a small percentage of time on extracting the level 
of detail, which leads to good rendering times due to the 
lower extraction times and, moreover, it benefits the 
application of those techniques. 
 
8.  Conclusions and Future Work 
 
We have described an efficient implementation of the 
LodStrips model introduced in earlier work. Efficient data 
structures and algorithms permit fast iteration through the 
LodStrips approximations. 
Spatial cost has been improved, as well as rendering times 
and the model has been successfully implemented in a 
computer game engine: Ogre3D. Moreover, the efficiency 
of the geometric acceleration techniques was tested on 
this implementation. To verify the increase in 
performance, a series of tests, besides to some 
acceleration techniques, were carried out to evaluate the 
ability of the model to manage the changes in the level of 
detail. 
One of the most important conclusions that must be 
highlighted is that this implementation shows a total 
integration with GPU. Hardware acceleration techniques 
allow us to increase the performance of the models with 
dynamic geometry. In this sense, the model noticeably 
increased its performance. This rise is mainly due to the 
optimised design of the model for the hardware, where 
level of detail extraction times are very low and so 
graphic acceleration is greatly benefited. 
Moreover, cache reutilisation techniques have shown 
good rendering times when cache-optimised triangle 
strips, generated from the NvTriStrip library, have been 
utilised, although improvements, in this way, are required 
in order to manage multiresolution schemes. 
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Figure 6. OpenGL DrawRangeElements and vertex array results obtained from the happy buddha object with strips generated from the Stripe utility. 
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Figure 7. Results obtained from the bunny model by applying hardware acceleration techniques. 
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Figure 8. Results obtained from the dragon model by applying hardware acceleration techniques. 

 


