
Modeling and Rendering of DPP-Based Light Fields

Miguel Escrivá, Alejandro Domingo, Francisco Abad, Roberto Vivó, Emilio Camahort
Departamento de Sistemas Informáticos y Computación

Universidad Politécnica de Valencia
Camino de Vera s/n, 46022 Valencia, Spain

{mescriva, adomingo, fjabad, rvivo, camahort}@dsic.upv.es

Abstract

Autostereoscopic displays are a subject of recent re-
search efforts in Computer Graphics. Such displays have to
be fed graphics information in order to produce spatial im-
ages. This information is typically 4D radiance data called
a light field. Traditionally light-field models were based
on the two-plane parameterization. In this paper, however,
we present a light-field representation that is based on the
direction-and-point parameterization. This parameteriza-
tion has certain uniformity properties that produce better
rendering results. We describe the files and data struc-
tures needed to store the representation, and we introduce a
rendering algorithm that takes advantage of the uniformity
properties of the direction-and-point parameterization. Our
algorithm runs in real time and renders light-field models
that look like their geometric counterparts.

1. Introduction

Recently 3D spatial and autostereoscopic displays are re-
ceiving a lot of attention [1, 10, 12, 13, 2]. The goal is to
provide multiple viewers with a 3D image of the object of
interest. This usually requires rendering 3D volumetric data
or 4D light-field data. We are concerned with 4D light-field
representations like those used in autostereoscopic displays.

Formally, a light field represents the radiance flowing
through all the points in a scene in all possible directions.
For a given wavelength, we can represent a static light field
as a 5D scalar function L(x, y, z, θ, φ) that gives radiance as
a function of location (x, y, z) in 3D space and the direction
(θ, φ) the light is traveling.

In practice autostereoscopic devices display a 4D ver-
sion of the light-field function [11, 8]. This version is typ-
ically based on the two-plane parameterization (2PP) that
was originally inspired by holography and, specifically, by
holographic stereograms [3, 9]. This choice of parameteri-
zation simplifies rendering by avoiding the use of cylindri-

cal and spherical projections during the light-field recon-
struction process. However, even 2PP models that rely on
uniform samplings of the planes are known to introduce bi-
ases in the line sampling densities of the light field. These
biases cannot be eliminated [4]. This problem is called the
disparity problem and can only be solved by choosing a dif-
ferent parameterization.

In this paper we introduce a light-field representation
that is based on the direction-and-point parameterization
(DPP) and does not suffer from the disparity problem. Such
a representation allows the user to move freely around
an object without noticing any resolution changes in the
model. This guarantees light-field invariance under rota-
tions and translations. Our representation samples the light-
field function by uniformly sampling the set of lines inter-
secting the object’s convex hull. As an approximation to the
convex hull we use a sphere tightly fit around the object.

Implementing a light-field model for Computer Graph-
ics rendering is similar to implementing a computer model
of any other function. It starts with a process that gener-
ates or captures a set of discrete samples to build the model.
Samples are then organized and stored so that they can be
efficiently retrieved for rendering.

A light-field implementation can be characterized by its
representation, its storage scheme, and its construction and
rendering algorithms. We present all of these in this pa-
per. First we review previous work in light fields. Then
we introduce our light-field representation and we detail its
storage organization. In Section 4 we describe our light-
field rendering algorithm. Finally, Section 5 presents re-
sults obtained with our representation. The paper finishes
with some conclusions and directions for future work.

2 Previous Work

The first two light-field implementations were proposed
by Levoy and Hanrahan [11] and Gortler et al. [8]. Both
implementations are 2PP-based and discretize the light-field
support by imposing rectilinear grids on both planes.

Figure 1. Recursive tessellation of the
sphere. Left, a triangle before subdivision,
and right, the triangle after subdivision. Note
that subtriangles’ vertices have been slightly
raised to meet the surface of the sphere;
also, dots at the center of the triangles rep-
resent directional samples.

The two-sphere parameterization (2SP) represents each
line passing through an object by its two intersection points
with a sphere tightly fit around the object [4]. Discretiza-
tions of the 2SP are based on nearly-uniform tessellations
of the sphere that satisfy certain hierarchical multiresolu-
tion properties. For each ordered pair of spherical triangles
a 2SP-based representation stores a light-field sample taken
along the line passing through the triangles centers. The
multiresolution properties of the sphere tessellation support
filtering and construction of a mipmap-like structure for the
light-field data.

3 Our Light-Field Representation

We build a light-field representation of a target 3D ob-
ject enclosed in a tightly fit bounding ball. Our goal is to
sample the light field for the lines that intersect the object’s
convex hull. We use the object’s bounding ball as an easy-
to-implement approximation of its convex hull.

This DPP implementation relies on a (nearly) uniform
discretization of the set of all directions in 3D Cartesian
space, a 2D space. As each point on a sphere’s surface cor-
responds to a single direction, we can obtain such a dis-
cretization by subdividing the surface of the sphere into
(nearly) equilateral, (nearly) identical spherical polygons.

A perfectly uniform tessellation produces D spherical
triangles each of area 4π/D. Common uniform tessella-
tions are those based on the platonic solids. The platonic
solid with the most faces, the icosahedron, has 20 faces.
To obtain finer tessellations we use recursive subdivision
[6, 5, 7] (see Figure 1). Each edge of each triangle in the
original icosahedron is divided into two equally long seg-
ments at its center point. That point is then projected out
onto the sphere’s surface to define a new vertex of the tes-

sellation. All vertices are then connected by new edges that
define four new subtriangles for each original triangle.

We can apply this subdivision process multiple times.
Every time we obtain a new set of spherical subtriangles
with nearly 1/4th the area of the triangles in the previous
subdivision step.

We associate to each spherical triangle a planar triangle
Tk with the same vertices. Each triangle defines a pencil
of directions Ωk that starts at the center of the sphere and
passes through the triangle. Each pencil Ωk is approximated
by a single directional sample ~ωk that starts at the center of
the sphere and passes through the center of the triangle Tk.
When a triangle is subdivided, only three new directional
samples are created. The center subtriangle inherits the di-
rectional sample of its parent triangle, even though it may
not pass exactly through its center.

3.1 Building a Light-Field Model

We now describe how to construct a model of an object.
A simple DPP-based light field can be constructed from a
synthetic model as follows. We center the target object at
the origin and scale it to fit inside of the unit sphere. We
choose the number of directional samples D and build the
sample set {ωk}D

k=1 using subdivision of the icosahedron.
For each direction ~ωk we render a parallel projection of the
object onto a projection plane Pk centered at the origin. The
resulting image is stored as image Lk of the representation.
A depth map Dk can also be obtained from depth informa-
tion. All the images are stored in an image array.

We use orthographic projections along the directions ~ωk.
The y axes of the projections are chosen so that they are
orthogonal to the ~ωk’s and point upwards on the planes spun
by each ~ωk and the world’s y-coordinate axis.

3.2 Storing the Light Field

The coarsest level of the geodesic approximation, level
0, has 20 triangles. Each subsequent level of the approx-
imation has 4 times more triangles than the previous one.
Such a tessellation can be stored as a hierarchy of triangles
or, equivalently, pencils with different resolutions.

We define an encoding for the triangles and the images
in the hierarchy (see Figure 2(b)). Level 0 of a light-field
model stores 20 images with ids between 01 and 20. The
images correspond to triangles that can be tessellated to ob-
tain 4 new subtriangles. Subtriangles are encoded with let-
ters C, H, L and R. Figure 2(a) shows how the letters are
assigned to the subtriangles:

• C - Represents the center subtriangle (note that this
subtriangle inherits the directional sample of its parent
triangle).

(a) Encoding of the subtriangles of the origi-
nal icosahedron triangle labeled 01.

01

01C 01H 01L 01R

01CC 01CH 01CL 01CR

(b) The hierarchical structure of the subdivision: 01,
01C and 01CC represent (roughly) the same direction,
so they share the same image.

(c) Storage of the images both in memory and disk: the tree in (b) col-
lapses to an image array, where 01C and 01CC do not appear because
they share the image of 01.

Figure 2. The hierarchical structure, encoding and storage of the light field’s image data.

• H - Subtriangle located right above or below the center
triangle (the horizontal triangle).

• L - Subtriangle to the left of the center triangle.
• R - subtriangle to the right of the center triangle.

Our choice of discrete directions is adequate for multi-
ple reasons. If we place the icosahedron so that two oppo-
site vertices coincide with the north and south poles of the
unit sphere, we entirely avoid the singularities that occur at
φ = ±π/2. The subdivision process can only choose a di-
rectional sample at φ = ±π/2 when D reaches infinity. Our
experiments show that the assumption that the discretization
is uniform, even though it is only close to uniform, has no
noticeable effects on the light-field rendering and process-
ing algorithms. And it substantially simplifies the light-field
representation and the design of the algorithms.

We use two strategies to store a light field’s image data.

1. We store the data in 20 files, one for each level-0 di-
rectional sample. Within each file, images are stored
in breadth-first order, the order used to generate the set
of directional samples (see Figure 2(c)). We use the
TIFF image format to store the images, since it sup-
ports multiple images per file and a variety of lossless
and lossy compression schemes.

2. We store each image in a separate file.

Associated to each light-field model we also store two
other files, a model file (Figure 3) and a direction file (Fig-
ure 4). The model file contains the parameters of the model:

• The directional and positional resolutions of the light
field.

• The position and orientation of the model.
• The number of images per directional sample (for 4D

light fields we only support one image per sample).
• The location of the Pk planes of the representation.
• The image and depth-map filename conventions.

The direction file contains information specific to each di-
rection, like the pencil’s ID, resolution of the image data and
the position and orientation of the Pk planes (see Figure 4).

Light-field models are notorious for requiring large
amounts of storage, and ours is not an exception. For ex-
ample a light-field model with a 256×256 positional resolu-
tion and 20480 directional samples requires roughly 3.7GB
without compression. If we compress the images using a
lossless algorithm we can get a 10:1 compression rate (as-
suming that most of the images contain a certain amount
of background pixels). With lossy (JPEG) compression we
can achieve as much as 40:1 rates depending on the amount
of background pixels.

In any case, all this image data is difficult to fit in main
memory. So we use out-of-core storage techniques to man-
tain just a working set of the images in memory. Our system
uses a texture least-recently-used (LRU) cache that manages
the light-field images so that only new images need to be
loaded from disk at any time.

4 Rendering Algorithm

The DPP rendering algorithm is an adapted version of
the Lumigraph algorithm [8]. Given the viewing param-
eters, it starts by placing an imaginary sphere centered at

0 SnapshotModel {
1 Name phot
2 Path ./DATA/phot.ssm
3 Center 0 0 0
4 Radius 1
5 Azimuth 0
6 Elevation 90
7 SpinAngle 0
8
9 Geode {

10 Type UNIFORM
11 Levels 4
12 Pencils 5120

13 Snapshots 6820
14 }
15 }
16 SnapshotsPerPencil 1
17
18 DMapFormat None
19 DMapType NONE
20 DMapResolution 0 0
21 ImageFormat PNG
22 ImageColorModel RGB
23 ImageResolution 256 256
24 JPEGQuality 075
25 DMapCompression DMC_NONE

Figure 3. Model file example.

the eye position. The sphere is tessellated exactly like
the sphere representing the set of directional samples of
the light-field model. The rendering algorithm determines
which pencils of directions intersect the viewing frustum.
For each of those pencils, it then renders an image on the
portion of the frustum intersected by the pencils.

Since pencils of directions form a hierarchy, the render-
ing algorithm is a breadth-first search. If a parent pencil
intersects the frustum, then its children are traversed. For
each pencil, intersection is determined as follows.

• Directional vectors are obtained for each of the vertices
of a given pencil triangle Tk.

• All vertices are tested for intersection with the viewing
frustum.

• If any of them intersects the window, then Tk is visible
and the search continues with the subtriangles of Tk.

We leave the reprojection and display steps of the algo-
rithm to the rendering hardware. We render each visible
triangle Tk with a texture map containing a portion of Lk.
That portion is determined by the geometric relationship
between the viewer’s position and the light-field model as
given by its center and orientation. We determine the cor-
rect texture coordinates by casting three rays, one through
each of the vertices of Tk, starting at the viewer’s position.
We intersect the rays with the plane Pk of the light-field rep-
resentation. Pk is given in world coordinates and depends
on the light-field model’s position and orientation. Once
we have the intersection points with Pk, we compute their
(u, v) coordinates using a transformation based on the ge-
ometric parameters of the light-field model. Lastly, we use
a texture map transform to properly warp the visible por-
tion of Lk onto Tk. The triangle is then texture-mapped and
rendered using standard graphics hardware.

This rendering algorithm displays the radiance data asso-
ciated to each triangle using a constant reconstruction ker-
nel. No interpolation is performed using the images (texture
maps) associated to neighboring triangles. Another version
of the algorithm performs quadralinear interpolation, where

01 256 256 -0.039 0.29 1 -0.591
01c 256 256 -0.039 0.29 1 -0.591
01cc 256 256 -0.039 0.29 1 -0.591
.....
10lclc 256 256 -0.044 0.088 1 -0.428
10lclh 256 256 -0.045 0.121 1 -0.442
.....

Figure 4. Direction file example.

Directional Samples Time Size
First dataset

20480 7h31m 178MB
5120 1h50m 44MB
1280 25m 11MB

Second dataset
20480 1h27m 208MB
5120 20m 52MB
1280 5m 13MB

Table 1. Construction times and storage re-
quired by our datasets.

linear interpolation is applied to each of the four dimensions
of the light field [4]. In the spatial domain interpolation is
achieved by using hardware assisted mip-mapping. In the
directional domain interpolation is done by alpha-blending
neighboring triangles.

The complexity of the rendering algorithm depends on
the number of directional samples that fall inside the view-
ing frustum. The wider the field of view, the more triangles
need to be rendered.

5 Results

We tested our system’s implementation by building
and rendering different light-field models constructed from

(a) 1280 directional samples. (b) 5120 directional samples. (c) 20480 directional samples.

(d) 1280 directional samples. (e) 5120 directional samples. (f) 20480 directional samples.

Figure 5. These light-field models with different directional resolutions were obtained by ray tracing a
geometric model with multiple light sources, reflection, refraction, and caustics. The spatial resolu-
tion of each light-field image is 256×256 pixels (rendering resolution is 512×512 pixels). The top row
was rendered using constant reconstruction and the bottom row using quadralinear interpolation.

traditional geometric models. To obtain the light-field
models we used the Persistence of Vision Raytracer
(http://www.povray.org). The two models shown in this
paper were built using a 3GHz Pentium 4 machine. Ta-
ble 1 summarizes the time and memory requirements of
both models. Memory requirements can be reduced by us-
ing 4D compression schemes instead of the brute force ap-
proach we use.

The light-field models were rendered using an OpenGL-
based (http://www.opengl.org) renderer. For image
storage and manipulation we used the OpenIL li-
brary (http://openil.sourceforge.net). Device-dependent
graphics were implemented using the SDL library
(http://www.libsdl.org). The images shown in Figures 5
and 6 were rendered using our rendering algorithm. Images
took less than 10 msecs to render. Rendering time depends
on the light field’s directional resolution and the type of re-
construction filter: constant or quadralinear.

Constant reconstruction runs faster at the expense of pro-
ducing rendering artifacts that look like seams. Quadralin-
ear interpolation requires rendering more triangles and thus
runs slower. It usually produces better results by smoothing
out the seams. However, it may still produce ghosting like
other interpolation methods, especially when the number of
directional samples is low.

Conclusions

We have presented a representation for 4D light-field
modeling and rendering. Our representation is based on the
direction-and-point parameterization. We show how to gen-
erate the light field’s radiance data and store it in memory
and disk. We describe the data structures and files used by
the representation. We also explain how our rendering al-
gorithm works.

The rendering algorithm allows the display of light fields
with different spatial and directional resolutions. Addition-
ally it supports two types of reconstruction kernels, con-
stant and quadralinear. Rendering large light-field models
requires using out-of-core techniques to handle memory us-
age problems.

Our system has the advantage that it uses a parameteri-
zation that is uniform and thus guarantees light-field invari-
ance under rotations and translations. This allows the user
to move freely around a model without noticing any resolu-
tion changes. Our results demonstrate that DPP-based light-
field models are competitive with geometry-based models.

We are currently working on improving our representa-
tion and its rendering algorithm. First, we want to augment
the light-field data with depth information (the representa-
tion already supports it). Using depth information we can
render higher quality images using lower directional reso-

(a) The original geometric model
rendered with POV.

(b) Light-field model rendered
showing the texture-mapped trian-
gles that fall inside the viewing
frustum.

(c) Light-field model with
128×128 spatial samples.

(d) Light-field model with
256×256 spatial samples.

(e) Light-field model with
512×512 spatial samples.

Figure 6. This model contains a cone, a
box and the Utah teapot rendered with a ray
tracer. The light-field versions contain 20480
directional samples.

lutions. This reduces the amount of storage required by the
light field’s radiance data.

We are also improving our representation and rendering
algorithm to handle multiresolution. Our directional sam-
pling algorithm already supports multiresolution by hier-
archically subdividing the sphere. Spatial multiresolution
can be implemented using texture mipmaps. Multiresolu-
tion can be used to build non-uniform models and to adap-
tively control a model’s rendering frame-rate.

Acknowledgements

This work was partially supported by grant TIN2005-
08863-C03-01 of the Spanish Ministry of Education and
Science and STREP project IST-004363 of the 6th Frame-
work Program of the European Union.

References

[1] S. Allan. 3-Deep. IEEE Spectrum, pages 22–27, April 2005.
[2] T. Balogh, T. Forgcs, O. Balet, E. Bouvier, F. Bettio, E. Gob-

betti, and G. Zanetti. A scalable holographic display for in-
teractive graphics applications. IEEE VR 2005 Workshop on
Emerging Display Technologies, March 2005.

[3] S. A. Benton. Survey of holographic stereograms. In Pro-
cessing and Display of Three-Dimensional Data, volume
367, pages 15–19, 1982.

[4] E. Camahort, A. Lerios, and D. Fussell. Uniformly sam-
pled light fields. In Proc. Eurographics Rendering Workshop
’98), pages 117–130, 1998.

[5] G. Dutton. Locational properties of quaternary triangular
meshes. In Fourth International Symposium on Spatial Data
Handling, pages 901–910, Zurich, Switzerland, 1990.

[6] G. Fekete. Rendering and managing spherical data with
sphere quadtrees. In Visualization90, pages 176–186, Los
Alamitos, California, 1990. IEEE Computer Society Press.

[7] J. S. Gondek, G. W. Meyer, and J. G. Newman. Wavelength
dependent reflectance functions. In Proc. SIGGRAPH ’94,
pages 213–220, 1994.

[8] S. J. Gortler, R. Grzeszczuk, R. Szeliski, and M. F. Co-
hen. The lumigraph. In Proc. SIGGRAPH ’96, pages 43–54,
1996.

[9] K. Haines and D. Haines. Computer graphics for holog-
raphy. IEEE Computer Graphics and Applications, pages
37–46, January 1992.

[10] A. Isaksen, L. McMillan, and S. J. Gortler. Dynamically
reparameterized light fields. In Proc. SIGGRAPH ’00, pages
297–306, 2000.

[11] M. Levoy and P. Hanrahan. Light field rendering. In Proc.
SIGGRAPH ’96, pages 31–42, 1996.

[12] K. Perlin, S. Paxia, and J. S. Kollin. An autostereoscopic
display. In Proc. SIGGRAPH ’00, pages 319–326, 2000.

[13] R. Yang, S. Chen, X. Huang, S. Li, L. Wang, and C. Jaynes.
Towards the light field display. IEEE VR 2005 Workshop on
Emerging Display Technologies, March 2005.

