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Abstract. Modeling and rendering of trees has recently received a lot of atten-
tion. Models have been developed that allow photorealistic rendering of trees at 
interactive frame rates.  However, little attention has been devoted to expressive 
rendering of these models.  In this work we present a multiresolution model de-
signed specifically to speed up painterly rendering of trees. Our method pro-
poses a novel clustering technique based on the computation of nested convex 
hulls.  We employ variable multiresolution to obtain efficient models that con-
tain higher resolution representations for the outside of the tree and lower reso-
lution representations for the inner parts. This variable multiresolution method 
mimics the techniques used by traditional artists to paint trees. 

1   Introduction 

Due to the intrinsic complexity of trees, the models that represent them are made of 
large amounts of polygons. Therefore, we can not achieve interactive rates when 
rendering these models. Current research in the literature used acceleration techniques 
based on replacing geometry by images. Only a few methods work with geometry. 

Geometry, however, is necessary in some cases like in painterly rendering of trees. 
In this case, the most popular method of representation is polygonal models. The 
mathematical simplicity of this type of representation makes it possible to render a 
great number of polygons with the current graphics hardware. However, due to the 
vast amount of polygons that compose the tree models, it is necessary to use some 
method that reduces the number of polygons without loss of visual appearance. The 
most common techniques are multiresolution models or discrete level of detail (LOD) 
models. 

Most of the existing generic multiresolution models can not be applied to our prob-
lem, since these models work with polygonal surfaces, whereas the leaves of a tree 
must be handled as independent polygons. Other specific models for vegetation also 
present important limitations. The model proposed by Lluch et al. [3] uses pre-
computed images that replace the leaves, which eliminates the geometry necessary to 
generate the brush strokes. The work presented by Remolar et al. [11] proposes a 
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simplification algorithm (LSA: Leaf Simplification Algorithm) that collapses pairs of 
leaves preventing more efficient approaches.  

In this work we present a geometry-based multiresolution model that allows the 
expressive rendering of trees using brush strokes. We introduce a clustering algorithm 
to organize the leaves of a tree. Then we propose a simplification algorithm suitable 
for rendering trees expressively. Our proposal extends the LSA algorithm and adapts 
it to the requirements of this type of rendering. Our models render at interactive rates 
on modern graphics hardware. 

2   Previous Work 

Our work is primarily related to two different areas of computer graphics: non-
photorealistic rendering of plants and trees and multiresolution modeling.  

The first methods for automatic illustration of vegetable species were introduced 
by Yessios [5] and Sasada [6]. They both produce tree sketches for architectural ap-
plications. Kowalski et al. [7] and Markosian et al. [8] also create abstract tree 
sketches using geometric primitives that approximate the tree’s foliage. Deussen [9] 
presents a method that creates pen-and-ink illustrations of plants and trees. His 
method supports the representation of specific plants and trees and not just generic 
trees like those in [7] and [8]. More recently Di Fiore [10] proposed a method that 
renders cartoon shaded trees from models generated from L-systems.  

In previous work [4] we presented a stroke-based method for non-photorealistic 
rendering of plants and trees. This method improves on Meier’s algorithm [1] by 
supporting interactive frame rates. The method can be applied to videogames, virtual 
walkthroughs and other real-time computer graphics applications. It models trees 
using random parametric L-Systems (RL-Systems) [2]. This approach has several 
advantages over the surface patch algorithm of Meier. For example, it supports the 
simultaneous generation of both the tree’s geometry and its stroke particles for future 
rendering. The stroke particles are distributed using the same RL-system that is used 
for modeling the tree’s geometry. To achieve this goal we use a shape instantiation 
process. This process represents every instantiable object - a branch or leaf - using 
both 3D geometry and a cloud of strokes. 

Multiresolution is a modeling technique that was first introduced to accelerate ren-
dering of complex geometries [14][16]. Additionally, multiresolution techniques have 
been proposed for image representations [17], curve and surface modeling [12], and 
volumetric data sets [13].  

Geometry-based simplification methods have been successfully applied to many 
areas of computer graphics. However, they fail to maintain the general structure of a 
tree. During the process, the tree’s volume diminishes and loses its visual appearance. 
Some techniques have been proposed for multiresolution models for plants and trees, 
like degradation at range, space partitioning, layered depth images, volumetric tex-
tures, bidirectional textures, leaf impostors and leaf collapsing [15]. 

However, the proposed models only work for realistic purposes and we need spe-
cific techniques to render them expressively. 
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3   Multiresolution Model 

RL-Systems allow modeling trees with realistic appearance preserving their structural 
complexity.  This amount of detail can be suitable for photorealistic rendering, but it 
may be excessive for stroke-based rendering.  We propose solving this problem using 
a multiresolution representation for the trees. 

One of the main components of a multiresolution model is its data structure, be-
cause it affects the quality of the final rendering of the model.  We start with an initial 
data structure that maintains the structural complexity of the tree.  Then a procedure 
builds the tree’s multiresolution model. The model is made of two different data 
structures: one for the branch brush strokes and the other for the leaf brush strokes. 

The extended data structure stores the data implicitly, both for the branches and for 
the leaves. To limit the size of the data structure we do not store all possible LODs of 
the tree. Implicit storage also avoids sudden changes (jumps) between contiguous 
LODs.  Although using implicit storage generally increases the cost of LOD extrac-
tion, in our case the increase is minimum. 

3.1   Branch Structure  

A tree modeled using an RL System undergoes an instantiation process that generates 
both a geometric and a brush-stoke representation for branches, leaves, flowers and 
fruit [4]. The brush-stroke representation is stored in a linked list to optimize memory 
management.  The process generates a branch representation made of multiple LODs. 
Each LODs has a certain number of strokes starting at three strokes per branch. The 
minimum LOD provides a low quality result for close views of the tree.  The quality 
can be improved by rendering a larger number of brush strokes for each branch. 

To add new brush strokes, we use an adaptive scheme [4] based on the branching 
level. For each branch we may have several LODs. The LOD finally selected for each 
branch depends on its branching level. The amount of detail (number of strokes) de-
creases from the trunk to the outer branches. Strokes are stored in a list containing all 
LODs organized sequentially. At rendering time the list is traversed until the desired 
LOD is reached. 

3.2   Leaf Structure 

Each leaf is represented using a brush stroke. For large trees this may require so many 
brush strokes that rendering may not be interactive. We propose using a model that 
stores a list of nodes. Each node contains the brush strokes associated to a cluster of 
leaves.  The model stores an implicit representation of the different LODs. This im-
plies that we do not store all computed LODs. 

To classify the original leaves in the different nodes we define criteria for cluster-
ing and simplification. These criteria are described with detail in the following sec-
tion. The width of the leaf stroke data structure (see Figure 1) depends on the number 
of clusters, whereas the depth depends on the number of LODs selected by the user.  
Width and depth are computed in the clustering process (Section 4).  For our test tree 
we use a structure of four LODs and thirty five clusters. 
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Fig. 1. Data structure of our foliage representation: the top row contains the clusters of leaves; 
lower rows contain lower LOD representations of the leaf clusters 

4   Clustering and Simplification 

The generation of the different LODs of the tree leaves requires a simplification 
method to decide which information is less relevant and remove it from the model. To 
implement a simplification method we first cluster the brush strokes of the leaves.  

There are two possible approaches. We can cluster the leaves in pairs and then col-
lapse each pair into a single object [11]. Or we can use information about the topol-
ogy of the tree to cluster the leaves into groups that, for example, share the same 
branch [10]. This second approach preserves the natural layout of the leaves but it 
produces a suboptimal simplification. 

Our simplification method could benefit from this clustering method, since it gives 
better visual consistency to certain trees like coniferous. However, we propose a new 
clustering method based on nested convex hulls. 

4.1   Clustering Method 

To cluster the brush strokes of the leaves we compute a set of nested convex hulls. 
Then we fill the clusters with the strokes between pairs of neighboring convex hulls. 
This method is based on techniques used by traditional artists to paint trees. The 
painter uses initially large rough strokes to paint the tree, and then adds detail using 
fine strokes over the original ones. 

To compute the set of convex hulls, we take the cloud of points formed by the cen-
ters of the polygons of all leaves.  We obtain their convex hull and remove the points 
belonging to the convex hull from the initial cloud.  We repeat this process until there 
are three or less points left. This produces a large set of convex hulls. So we only keep 
a user-selected number of them. They are chosen equally spaced between the largest 
convex hull and the smallest convex hull that contains at least 10% of the total num-
ber of leaf strokes. Given this set of leaf clusters we apply our simplification algo-
rithm to each of them. This approach supports simplifying inner clusters more than 
outer clusters.  
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4.2   Simplification Method 

For simplification we use the LSA algorithm [11] with two improvements: we allow 
leaf collapses of more than two leaves, and we obviate the requirement to compute the 
orientation of the tree with respect to the viewer during rendering. This speeds up 
stroke extraction, thus reducing rendering time.  

We collapse leaves using the distance and coplanarity criteria of the LSA. As simplifi-
cation proceeds and coarser LODs are generated, we increase the distance and coplanar-
ity angle thresholds. After running, our algorithm produces a set of LODs for each cluster 
of strokes. Each LOD contains groups of brush strokes simplified to single strokes. 

5   Rendering 

Multiresolution modeling requires a data representation, a simplification algorithm 
and an LOD extraction algorithm for rendering.  In this Section we describe how to 
extract LODs for both branch and leaf brush strokes. 

5.1   Extraction of Brush Strokes Associated to Branches 

The brush strokes associated to the branches are stored in a linked list (see Section 
3.1).  To extract an LOD we traverse the list rendering all brush strokes we find until 
a maximum number is reached. This number depends on the branching level and the 
distance from the viewer to the tree. Our method includes a pruning step that removes 
branches whose projected length is so short that they can not be perceived. 

5.2   Extraction of Brush Strokes Associated to Leaves 

After applying the simplification algorithm, we know the number of strokes stored at 
each node of the resulting data structure. For each row of the structure we store the 
total number of strokes. We use these numbers to decide how to traverse the structure 
to extract the desired LOD. 

The process begins computing the distance from the observer to the model.  Based 
on this distance we determine the number of brush strokes to display. With that num-
ber we select the two rows that contain the closest numbers of strokes. We traverse 
the two rows and select the combination of nodes that better fits the desired number of 
strokes. Figure 2 shows two example rows with all possible traversals in different 
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Fig. 2. LOD extraction from two rows of the leaf stroke data structure 
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colors. Note that the first nodes in the selection always belong to the top row and the 
last nodes to the bottom row. 

6   Results 

We have applied our algorithms to a generic ternary tree with 9841 branches and 
8748 leaves. We have rendered the tree using OpenGL in a PC with Windows 2000, a 
2.8 GHz AMD Athlon processor and an nVidia GeForce FX 5200 with 128 Mb. Fig-
ure 3 shows four renderings of the branches of the tree at different LODs. 

We have clustered the leaves into 35 convex hulls each of them simplified four 
imes. Figure 4 shows four LODs of the leaves of our test tree. Simplified leaf trokes 
have been drawn in red to show how simplification proceeds from the nside to the 
outside of the tree. Figure 5 shows a front view of the tree endered at four different 
 

 

Fig. 3. The branches of the test tree and three finer LODs generated with our method. The trees 
contain 33663, 3754, 1159 and 363 branch strokes with pruning. 

 

Fig. 4. The test tree and three finer LODs. They have 8748, 4156, 2463 and 761 leaf strokes. 

 

 

Fig. 5. The test tree and three finer LODs. They have 42411, 7910, 3622 and 1124 strokes. 
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Table 1. Rendering times of the tree models shown in Figures 3 and 5 (in msec) 

Only branches (Fig. 3) Test Tree LOD 1 LOD 2 LOD 3 
Number of strokes 33663 3754 1159 363 

Rendering time 66.7 27.8 13.5 13.5 
Full tree (Fig. 5) Test Tree LOD 1 LOD 2 LOD 3 
Number of strokes 42411 7910 3622 1124 

Rendering time 250 125 91 66.7 

LODs. The top row shows the LODs at the same size, he bottom row shows real 
rendering sizes. This view shows better the results f our simplification algorithm. 

Table 1 shows the rendering times of the models depicted in Figures 3 and 5. 

7   Conclusions and Future Work 

We have presented a multiresolution model specially designed for painterly rendering 
of trees. For each tree we generate and render brush strokes. Our solution separately 
handles the branches and the leaves of a tree. The storage of the LODs is implicit, 
avoiding an excessive increase in the spatial cost of the data structure. Our method 
allows efficient extraction and rendering of LODs. Rendering runs at interactive rates 
and sudden changes between contiguous LODs are not noticeable.  

We can extend our method to include viewer-distance dependent adaptive simplifi-
cation. We are also considering applying our model to photorealistic rendering and 
including the structural information of the trees in the clustering process.  This would 
produce better approximations for trees like coniferous. 

We want to extend our model to use occlusion techniques for modeling large tree 
populations. We also want to create a tree database, and we want to extend our ex-
pressive rendering algorithms to support other artistic techniques like sketching, en-
graving and half-toning. 
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