
Improving Quality of Service in Videogames∗

Inmaculada García
Technical University of Valencia

Camino de Vera, s/n
46022 - Valencia - Spain

ingarcia@dsic.upv.es

Ramón Mollá
Technical University of Valencia

Camino de Vera, s/n
46022 - Valencia - Spain

rmolla@dsic.upv.es

ABSTRACT
Every object in a videogame has different aspects to simu-
late as behavior, physics, graphics or sounds. Every aspect
requires its own Quality of Service (QoS) levels (complex-
ity and sampling). Traditional videogames follow a scheme
of continuous coupled simulation. This rigid scheme does
not allow to define a specific QoS sampling frequency. It
is defined implicitly for the whole system and it is hardly
dependent on the videogame, system load and the machine
characteristics. A discrete simulation paradigm allows to de-
fine a private QoS criteria for each aspect of each object in
the videogame. This discrete system allows a Smart System
Degradation (SSD) and may redefine the objects QoS while
the videogame is running. Objects may adapt its QoS based
on the system status or on local performance degradation.
This paper shows the results of the transformation of a con-
tinuous simulation videogame kernel (Fly3D) into a discrete
one by integrating the discrete event simulator DESK.

Categories and Subject Descriptors
I.6.8 [Simulation and modeling]: Types of Simulation

General Terms
Simulation Applications on Games

Keywords
Simulation, Computer Games, Quality of Service

1. INTRODUCTION
The videogames QoS uses to be restricted to graphic param-
eters, but the QoS includes other videogame characteristics,
such as behavior, physics or sampling frequency. The three
main aspects in the videogame QoS are:

∗Supported by grant GV04B-497 of the Valencia State Gov-
ernment, by grant TIC2002-04166-C03-01 of the Spanish
MCYT, and by a STREP project IST-004363 of the 6th
Framework Program of the European Union.

Family UF Simulation Physics Sample
Strategy Low High Low Chess, Warcraft
Arcade High Low High Quake, Doom
Flyght High High High Comanche,
simulators ATP, Lock On
Other Low- High Low Simcity,
simulators Medium The Sims
Graphic Medium Medium Low Broken Sword,
adventures The Westerner
Rol Low- Medium Low Knights of the Old

Medium Republic

Table 1: Videogames families.

• User Feedback (UF). Traditional Human Computer In-
terface (HCI) reference to videogame graphics (object
geometry, textures, Screen Refresh Rate (SRR), anti-
aliasing, motion blur, screen resolution, lighting or
lightmaps) and sound (surround, quality, midi). But,
other HCI aspects start to be included in videogames
like stereo vision, tactile feedback or visual user recog-
nition [6], or other haptic interfaces [7].

• Physics. Inverse kinematics, collision detection, iner-
tia, dynamics or forces.

• Behaviors strategies or Artificial Intelligence (AI).

Those aspects have not the same relevance for all videogames
families. Table 1 show some examples of videogames fam-
ilies and the level (low, medium or high) of significance of
each QoS aspect. The programmer defines some videogame
objects QoS parameters such as object geometry, polygons
number, object size, texture color depth or amount of tex-
tures. Programmers traditionally allow the user to define
some videogame rendering characteristics like anti-aliasing
or screen resolution. This is a way to adjust the render
object QoS to the computer power where the videogame is
executed.

The traditional videogames simulation paradigm does not
allow to define the videogames QoS properly.

1.1 Videogames Simulation Paradigm
A computer game may be considered a system [2] and it can
be represented using modeling and simulation techniques.
Attending to the systems classification [11] a videogame
could be considered a hybrid system. This means that the
continuous system evolution in time may be altered by events

not associated to the world sampling period. Attending to
algorithm 1 [8], traditional videogames follow a continuous
simulation scheme since the whole scene graph objects are
sampled once in every world evolution. Continuous simula-
tor sampling period is defined by the time elapsed in a run of
the program main loop although they are considered hybrid
systems. Every world evolution always requires a previous
user input and a full UF. This coupled scheme was used by
the earlier videogames and it has survived until present (free
source code videogames).

Algorithm 1 Traditional videogames main loop.

while true do
Get information from input devices
Compute a tick of the simulation. Evolute one step the
whole universe
Update UF (video, sounds, haptics,...)

end while

1.2 Discrete over Continuous Simulation
Implementing computer games as continuous systems have
many disadvantages:

• All objects in the scene graph (or in the active objects
list) are simulated, although many objects will never
generate events. So, the simulation may be erroneous
because of disorderly events execution (depending on
the objects position in the scene graph) or even the
execution of canceled events.

• The videogame objects sampling frequency is the same
for all objects. If objects behaviors do not match
Nyquist-Shannon theorem they will be undersampled
or oversampled.

• The videogame is hardly dependent on topics that can
change during the game, such as available computer
power, world complexity, other active tasks in system
or current simulation and rendering load. The sam-
pling frequency depends on the system load; so, it is
variable, not predefined and not configurable for each
particular object or object aspect.

Let it be: T sampling period of the whole system, SSF
sampling frequency of the whole system, OS collection of ob-
jects in the videogame, Oi collection of the object i aspects,
OSFi,j object i sampling frequency that models the aspect
j and OSFi,jmin minimum OSFi,j to simulate the aspect j
of the object i properly. Videogames continuous simulation
evolute the whole system at a time. Every evolution (world
sampling) is a main loop step (algorithm 1). The whole sys-
tem is sampled following the equation SSF = 1

T
= OSFi,j .

This simulation scheme has disadvantages. Different object
aspects may need different OSFi,j .

Continuous simulation paradigm supports discrete simula-
tion in a very inefficient way while discrete simulation scheme
supports simultaneously discrete but also continuous simu-
lation in a very smart way [2]. Discrete simulation paradigm
has advantages over continuous simulation since only those
objects that change their state produce events and consume
computer power. The object priority in simulation depends

on the time its events are set. The next event to simulate
the aspect j of the object i will be sent to itself 1/OSFi,jmin

time units later.

There is no restriction in the sampling frequencies. They
are constant or may change dynamically if the program-
mer wants. Even different object aspects may have different
sampling periods if required and they may change during
the whole videogame execution. So, the QoS can be de-
fined for each object aspect by the programmer. The system
distributes the computer power according to each objects
needs.

1.3 Decoupling over Coupling
If animation and rendering are decoupled, scenes are ren-
dered more quickly even when the higher-level animation
computations become complex [9]. This decoupling increases
system performance [3]. The rendering and simulation de-
coupling allows the independence of other processes in the
system [1]. Decoupling was created to distribute the sys-
tem processes in a computer network or to use parallelism.
However such distribution is not possible in games created
to run in a single PC or console1. Tests [10] show that
more than 70% rendering power may be wasted if the SSF
overpasses the SRR. The SRR can not be defined by the
programmer or by the user in a continuous videogame. Dis-
crete videogames allows the independence of the SRR and
the system load. The SRR can be defined and/or adjusted
during the videogame execution automatically or explicitly
by the programmer.

2. OBJECTIVES
The discrete event simulator DESK [5] has been integrated
into the Fly3D kernel [12][13] to test if the new simulation
paradigm improves both the performance and the simulation
quality. DESK is a library developed by us to solve discrete
simulation. GDESK [4] is DESK adapted to videogames.
DFly3D (Discrete Fly3D) is the modified Fly3D v2.0 ker-
nel result of using GDESK to manage the Fly3D events.
A videogame created using DFly3D is a collection of ob-
jects interchanging messages [4] managed by GDESK. The
object defines its behavior as the response to an incoming
message. The number of messages generated in an inter-
action depends on how the programmer models the objects
interaction or the object behavior. Different system objects
or the same object may have a discrete or continuous be-
havior, instantaneously or during the videogame execution.
The objects priority depends on the events generation pro-
cess, completely defined by the videogame programmer for
each object. The Render Process (RP) is managed by a
specific object. The RP generates a event each time a ren-
dering must be performed. So, the RP is decoupled from
the Simulation Process (SP). Each peripheral is managed by
a different object in order to adapt its sampling frequency
to the device characteristics (as keyboard process or sound
process).

3. RESULTS
1New game platforms like PS3, based on grid computing,
will put again on the table the necessity of this paper
paradigm shift in videogame technology

We made a videogame consisting on some balls jumping and
colliding. Two videogame versions have been implemented
for both Fly3D and DFly3D kernels. The QoS aspect con-
sidered in tests has been the number of balls movements and
the accurate collision detection. The balls number for tests
has been changed increasing both simulation and rendering
load. Both systems have been tested in a PC Pentium 4 (2
GHz) with 512Mb Ram with the Nvidia GeForce 4 MX440
graphic card.

3.1 Simulation Times Comparison

0,1

1

10

100

1 15 30 45 60 75 90 10
5

12
0

13
5

15
0

16
5

18
0

19
5

21
0

22
5

24
0

Objects Number

%
 T

ot
al

 S
im

ul
at

ed
 T

im
e

Render Simulation Free

Figure 1: Simulated time in Fly3D (logarithmic).

0,1

1

10

100

1 15 30 45 60 75 90 10
5

12
0

13
5

15
0

16
5

18
0

19
5

21
0

22
5

24
0

Objects Number

%
 T

ot
al

 S
im

ul
at

ed
 T

im
e

Render Simulation Free

Figure 2: Simulated time in DFly3D (logarithmic).

Figures 1 and 2 show the simulated time percentages used
for both systems to simulate, render and remain idle. Time
in the continuous system (figure 1) is shared by the SP and
the RP. For each main loop step each object is simulated
once and the scene is rendered, at the maximum speed. An
increase in the SP load supposes to decrease the RP and
viceversa.

In the discrete system (figure 2) the RP and the SP are
not dependent (decoupling). So, the videogame time is not
shared by rendering and simulation. The system uses only
the 100% of CPU time if the system is collapsed (the sys-
tem load is bigger than the computer power). The discrete
system always freed more time than the continuous system.
If the computer power is enough to simulate the system ob-
jects properly, the released computer power may be used by
other system applications. The discrete system uses only the
necessary computer power to simulate properly the system
objects.

3.2 Sampling Frequency
An object in a videogame may have different aspects (graphic,
AI or physics aspects) that may need to be sampled sepa-
rately. For example, a ball is distorted once every second,

but its speed forces to change its position every 0.05 seconds
and to detect its collisions. The sampling frequency is the
same for all objects in a continuous system and for all the
objects aspects. This sampling frequency depends on the
computer power and the videogame load. All objects are
sampled to the higher frequency the system can achieve. It
is quite difficult for the global system sampling frequency
to match the ideal objects sampling frequency. So, if the
object QoS requires a higher sampling frequency, it is un-
dersampled. If the object needs a lower sampling frequency,
the object is oversampled. The discrete system allows to
define different sampling frequencies for each object aspect.
DFly3D objects sampling frequency may change to adjust
the sampling to the current object behavior or to the object
QoS.

We say that the computer system is collapsed when a sys-
tem is not able to show the scene properly (incorrect ob-
jects behavior). Let it be: CFS global system collapse fac-
tor and CFi,j object i aspect j collapse factor. A system
could be collapsed due to the videogame scene or simula-
tion complexity or because of the low computing power.
If the system is collapsed both kernels do not allow run-
ning the videogame properly. The continuous kernel typ-
ically undersamples the objects making their movements
more chaotic and the collision detection fails many times
(∃i ∈ OS,∃j ∈ Oi : OSFi,jmin > SSF). The bigger the
load, the more aspects and objects that do not match the
Nyquist-Shannon theorem. The discrete kernel produces a
correct output since discrete simulators always match ∀i ∈
OS, ∀j ∈ Oi : OSFi,j > OSFi,jmin , but the system evolu-
tion is slower. That is, simulated time cannot follow real
time. The given moment of system collapse depends on
the videogame complexity and the kernel used. The bigger
the simulation load, the slow the simulation runs. The col-
lapse can be measured by the CFS. Each object i aspect
j have its own collapse factor CFi,j (∀i ∈ OS, ∀j ∈ Oi :
OSFi,jmin > SSF =⇒ CFi,j = OSFi,jmin − SSF). If the
system is not collapsed, this factor is 0 (∀i ∈ OS,∀j ∈ Oi :
OSFi,jmin ≤ SSF =⇒ CFi = 0). The global system factor
is fixed by the collapse factors of each aspect of each object
(CFS =

∑i∈OS
i

∑j∈Oi
j | CFi,j |).

A system is collapsed when there is at least an aspect j of the
object i that does not maintain its OSFi,j (∀i ∈ OS,∀j ∈
Oi : OSFi,jmin > OSFi,j =⇒ CFi,j = OSFi,jmin − OSFi,j ,
∀i ∈ OS, ∀j ∈ Oi : OSFi,jmin ≤ OSFi,j =⇒ CFi,j = 0). If
an object aspect OSFi,j is degraded, all the objects aspects
sampling frequencies, are degraded too. The system degra-
dation is uniform in a discrete system. The discrete system
produces a SSD. If the system is collapsed and the sampling
frequency of each object aspect is correctly selected, the sys-
tem slows down, but the simulation remains correct. That
is, the restriction is that the simulated time must follow
always real time.

Each object aspect has a different percentage of degrada-
tion in a continuous system. The SSF decreases, so, each
object sampling frequency decreases too. The new global
sampling frequency can degrade each object in a different
percentage. If the system is collapsed, the continuous sys-
tem may have erroneous behaviors as losing events or not
detected collisions in some objects. The computing overload

produced by the discrete events management in a discrete
system is minimum, so both paradigms overheads are quite
similar. The discrete system when there is not enough com-
puter power to simulate the system following the real time.
The amount of simulations remains constant although the
system load grows. The QoS of each object aspect is main-
tained. So, this kernel can be used for off-line or not real
time simulation also.

3.3 Dynamic Improvement and Degradation
The discrete system may be defined to adapt the computer
power to the CFS or to redefine the QoS of system objects,
in order to adapt the objects behavior to the real system
load. For example, let the RP to generate 50 FPS, and
the ball is sampled 20 times per second. If the computer
power is low and the ball needs to be sampled during a time
interval 30 times per second, the RP may slow down to only
25 FPS, releasing computer power. The opposite situation
can be done too. If the RP detects free computer power
can generate more FPS or the ball may do it too. That
supposes to use techniques to adapt the system degradation
factor dynamically. The monitorization of the degradation
factor can be done for:

• Each object. The object collects information about if
its QoS has been accomplished and redefines its QoS
as consequence. The object can get global system in-
formation too. The object decisions can involve other
objects. For example, the programmer decides if the
ball simulation has priority over the RP. If the ball
detects that it is not simulated properly, the ball may
send a message to the RP to decrease the RP QoS in
order to improve the ball QoS.

• Each object aspect.

• The whole system. There are two possibilities:

– A Monitorization Object (MO) is created. The
MO sees system information. If any object aspect
QoS must be changed, the MO sends messages
to the objects involved. The message contains
the necessary information to allow the object to
change the object aspects as convenience.

– Any system object monitorizes the whole system.
It is no necessary to create a specific MO. Its func-
tionality may be assumed by any other object.

4. CONCLUSIONS
The videogame QoS can be defined by three different as-
pects: UF, physics and simulation. Each object aspect in
a videogame has its own QoS. Traditional videogame ker-
nels define a global QoS based on the graphic videogame
characteristics. The QoS is defined for the whole system
because traditional videogames follow a scheme of coupled
continuous simulation. The level of system degradation is
not uniform; it depends on each object characteristics. Al-
though continuous simulation games have been the main
stream during the last years, this paradigm has many draw-
backs, especially in current requirements: portable devices
games (very low computer power) or last generation per-
sonal computer games (high load). The discrete simulation
paradigm allows to define a QoS criteria for each aspect

of each object in the videogame, as sampling frequency or
simulation quality. This sampling frequency may change to
adapt the object aspect QoS to the real computer power
and distribute the computer power adequately among the
objects. The objects events are executed ordered by time.
The RP works as any other videogame object. So, the SRR
can be adjusted to the system load or characteristics. The
result obtained is a discrete system that allows a SSD and
may redefine the objects aspects QoS. Objects can collect
system information and use it to adapt their QoS.

5. REFERENCES
[1] M. Agus, A. Giachetti, E. Gobbetti, and G. Zanetti. A

multiprocessor decoupled system for the simulation of
temporal bone surgery. Computing and Visualization
in Science, 5(1), 2002.

[2] J. Banks, J. Carson II, B. Nelson, and D. Nicol.
Discrete-Event System Simulation. Prentice Hall
International Series in Industrial and Systems
Engineering, 2001.

[3] R. Darken, C. Tonnesen, and K. Passarella. The
bridge between developers and virtual environments:
a robust virtual environment system architecture.
SPIE, 1995.

[4] I. Garćıa, R. Mollá, and A. Barella. GDESK: Game
discrete event simulation kernel. WSCG, 2004.

[5] I. Garćıa, R. Mollá, E. Ramos, and M. Fernández.
D.E.S.K.: Discrete events simulation kernel.
ECCOMAS, 2000.

[6] T. Komura, A. Kuroda, and Y. Shinagawa.
NiceMeetVR: Facing professional baseball pitchers in
the virtual batting cage. Cgforum, 16(3):C347–C355,
1997. (Proc. Eurographics’97).

[7] S. Mokka, A. Väätänen, J. Heinilä, and P. Välkkynen.
Fitness computer game with a bodily user interface.
Cgforum, 16(3):C347–C355, 1997. (Proc.
Eurographics’97).

[8] R. Pausch, T. Burnette, A. Capehart, M. Conway,
D. Cosgrove, R. DeLine, J. Durbin, R. Gossweiler,
S. Koga, and J. White. A brief architectural overview
of Alice, a rapid prototyping system for virtual
environments. IEEE Computer Graphics and
Applications, 1995.

[9] C. Shaw, J. Liang, M. Green, and Y. Sun. The
decoupled simulation model for virtual reality
systems. CHI, 1992.

[10] Tom’s Hardware Guide. www6.tomshardware.com.

[11] G. Warnier. Introducción a la simulación de sistemas
de eventos discretos. Technical Report 96-005, Buenos
Aires University, 1996.

[12] A. Watt and F. Policarpo. 3D Computer Games
Technology: Real-Time Rendering and Software,
volume I. Addison-Welsey, 2001.

[13] A. Watt and F. Policarpo. 3D Computer Games,
volume II. Addison-Wesley, 2003.

