
Interactive Three-Dimensional Rendering on Mobile
Computer Devices

Javier Lluch∗,Rafael Gaitán†,Emilio Camahort‡,Roberto Vivó§

Computer Graphics Section
Department of Computer Science
Polytechnic University of Valencia

Camino de Vera s/n 46022, Valencia, Spain

ABSTRACT
We present a client/server system that is able to display 3D scenes
on handheld devices. This kind of devices have important restric-
tions of memory and computing power. Therefore, we need to limit
the amount of geometry sent by the server to each client. We ex-
tract the geometry that is visible for each client and send it. The
clients render the geometry using theOpenGL ES[11] API. Our
geometry extraction algorithm employs multiresolution and view-
dependent simplification. We present results of our system running
on a software implementation ofOpenGL ESthat runs on a Pock-
etPC 2003.

Categories and Subject Descriptors
I.3.1 [Computer Graphics]: Graphics Systems,network graphics;
C.2.4 [Computer-Communication networks]: Distributed Sys-
tems,Client/Server

Keywords
3D graphics, wireless PDAs

1. INTRODUCTION
Over the last few years mobile computing platforms have made
important advances. We can see handheld devices with increasing
processor speed and integrated wireless technologies. Computer
graphics are also rapidly advancing in mobile devices. There is
even a 3D graphics library calledOpenGL ESfor embedded sys-
tems. Still, mobile devices have limitations of memory and pro-
cessing power. Also, most of them do not offer hardware acceler-
ated graphics. This makes it difficult to render and interact with
large 3D scenes on these devices.

Recent advances in 3D design, acquisition and simulation have led
to larger and larger geometric data sets that exceed the size of the

∗jlluch@dsic.upv.es
†rgaitan@dsic.upv.es
‡camahort@dsic.upv.es
§rvivo@dsic.upv.es

main memory and the rendering capabilities of current graphics
hardware. Various algorithmic solutions have been proposed to
bridge the increasing gap between the power of the hardware and
the complexity of the geometry data. These proposals include: ren-
dering with hierarchical multiresolution, viewing frustum culling,
occlusion culling and image-based rendering.

Culling methods can be easily combined with multiresolution mod-
els to select levels of detail according to criteria like viewpoint lo-
cation, illumination conditions and the scene’s rate of change. This
approach is called view-dependent simplification. However, using
multiresolution increases the size of the geometry data and requires
that the entire geometry be kept in main memory. This is the reason
why multiresolution models can only be applied to data sets that do
not exceed the size of the main memory.

To solve this problem new models have been developed that store
large scenes in secondary memory (out-of-core). We can still ren-
der these models at interactive speeds using view-dependent sim-
plification. One of the immediate applications of this type of mod-
els is rendering of three-dimensional scenes on mobile devices.

We propose applying current multiresolution, viewing frustum cull-
ing and out-of-core techniques to 3D graphics rendering on mobile
devices. We present a client-server system that delivers simplified
geometry to a PDA over a wireless connection. The server stores
the scene graph and extracts levels of detail to be rendered at the
client. Careful selection of appropriate levels of detail allows ren-
dering at interactive rates on a handheld device.

Our system uses a geometry cache that manages two copies of the
set of visible objects. One copy is located at the server and the
other at the client. The server updates the cache with the visible
geometry when the scene or the viewing parameters change. A
synchronization process mantains the coherence between the server
and the client copies of the cache. With this approach we only
send geometry updates from the server to the client, thus reducing
the latency and bandwidth requirements of our system. It also has
the added advantage that we can use advanced geometry culling
methods at the server side.

Our server system also supports multiresolution and view-dependent
simplification, thus allowing the selection of a suitable level of de-
tail for rendering each desired view. The system can render scenes
with any number of polygons. It improves on previous systems
because we do not store the entire geometry at the mobile device.
Neither do we render at the server and send the rendered frames
to the client. Instead we make sure that the client only receives

those parts of the scene graph that are visible. Those parts are cur-
rently rendered using a software library. Once hardware accelerated
rendering is available we will be able to render larger amounts of
geometry on the mobile device.

This paper is structured as follows. First we review previous work
related to 3D rendering on mobile devices, multiresolution model-
ing and out-of-core geometry processing. Then we introduce our
system and describe its architecture. In the following section we
show some results obtained with our system. Finally we present
our conclusions and directions for future work.

2. BACKGROUND
In this section we survey previous work in the areas of 3D render-
ing on mobile devices, multiresolution modeling and out-of-core
methods. We also introduce the idea of external memory view-
dependent simplification and theOpenGL ESAPI.

2.1 Three-dimensional Rendering on Mobile
Devices

There are three techniques for 3D rendering on mobile computer
devices:polygon-based rendering, image-based renderingandpoint-
based rendering. We briefly review these techniques.

2.1.1 Polygon-Based Rendering
Polygon-based rendering systems are like those implemented in
traditional graphics accelerators. Such systems typically use their
own graphics library, although some systems usePocketGL[12].
PocketGLis a software library for embedded systems. It was de-
veloped for specific devices, most of them non-OpenGL EScom-
pliant. These systems render three-dimensional scenes with a soft-
ware rasterizing using the native 2D API for writing to the graphics
device.

D’amora and Bernardini presents a 3D viewer for PocketPC de-
vices [2]. The viewer provides a stand-alone solution for access
to MCAD 3D models during stages of the manufacturing process
where using design workstations is impractical or limited. The
viewer accepts models in its own compressed format. The models
are sent over a wireless network and decompressed at the receiving
end. The problem of this system is that it sends the entire model to
the viewing device, instead of sending a simplified version. There-
fore it is not very well suited for large scale geometric models.

In [17] the authors describe aPocketGL-based continuous multires-
olution rendering engine for PDAs. The engine can dynamically
adjust the level of detail of the objects according to the target frame
rate set by the user. The frame rate is considered as an objective
function that determines both the quality of the scene and the in-
teraction capability. The viewer requires that the geometric models
reside in the PDA’s memory. This limits the amount of geometry
that can be handled by the viewer.

Sanna et al. proposes a general architecture for searching, retriev-
ing and rendering complex 3D models on PDA’s[14]. The architec-
ture includes geometry servers, rendering servers and client appli-
cations that display the resulting images.

2.1.2 Image-Based Rendering
Image-based methods use images to replace some or all of the ge-
ometry of a scene in 3D rendering. The use of precomputed images
speeds up the rendering algorithm and provides realistic effects at

a low cost. Images can also be rendered at a server system and
delivered to a client system for remote display.

For example, [1] proposes a client-server system that renders ge-
ometry at the server and sends the resulting images to a PocketPC
client for display. The images are accompanied by depth infor-
mation obtained from the renderer’s depth buffer. Using the depth
information and 3D warping, the client can produced new images
without requesting more information from the server.

Alternatively, [15] introduces a system that delivers images to a re-
mote PC. The system uses a client-server collaborative scheme to
determine which pixels need to be updated for every new frame. In-
stead of sending entire images, the authors use a prediction method
to exploit spatial coherence and wipe out correct pixels from the
difference image. This substantially reduces the bandwidth require-
ments of the client-server communication.

Finally, [16] describes a server system that sends a compressed
video stream to a client. The stream has been rendered using the
camera parameters provided by the client. The software implemen-
tation of this system allows engineers to view and interact with 3D
CAD files using a wireless phone connected to a personal data as-
sistant (PDA).

2.1.3 Point-Based Rendering
For complex scenes, the traditional graphics pipeline can be waste-
ful, with the processor spending much effort transforming and ras-
terizing numerous geometric primitives that might cover less than a
pixel. Point-based rendering displays complex geometries by ren-
dering a set of points located on the surface of the objects. The
number of point samples rendered depends on the complex object’s
screen size.

One approach to point-based rendering is to create unstructured
point sets by generating point samples stochastically as a prepro-
cess or procedurally on the fly. Another approach is to generate
structured point sets, for example by creating a hierarchy. This
method also permits visualization of complex models, in particu-
lar those that do not fit in main memory. The algorithm creates
a hierarchy of bounding volumes and achieves flexible rendering
by halting the descent into the hierarchy depending on rendering
speed requirements and screen size. This hierarchy stores interme-
diate normal and color attributes.

In [4] the authors use a packed hierarchical point-based representa-
tion for rendering. The method supports traversal of the hierarchy
in a specific order, resulting in a fast, one-pass shadow-mapping
algorithm.

2.2 Multiresolution Mesh Representation
Multiresolution meshes are a common basis for building represen-
tations of geometric shapes at different levels of detail. The use
of the term multiresolution means that the accuracy (or level of
detail) of a mesh in approximating a shape is related to the mesh
resolution, i.e., to the density (size and number) of its cells. A mul-
tiresolution mesh provides several alternative mesh-based approxi-
mations of a spatial object (e.g., a surface describing the boundary
of a solid object, or the graph of a scalar field).

A multiresolution mesh is a collection of mesh fragments, describ-
ing usually small portions of a spatial object with different accura-
cies. It also includes suitable relations that allow selecting a sub-

set of fragments (according to user-defined accuracy criteria), and
combining them into a mesh covering part or the whole object. Ex-
isting multiresolution models differ in the type of mesh fragments
they consider and in the way they define relations among such frag-
ments. The reader is referred to the survey [7] for a detailed de-
scription of multiresolution mesh representations.

2.3 External Memory View-Dependent Sim-
plification

Recently, the idea of view-dependent simplification [6] was intro-
duced. View-dependent simplification enables changes to multires-
olution hierarchies that depend on parameters such as viewer loca-
tion, illumination conditions and speed of motion. At each frame
these simplifications adapt the mesh structure to obtain the right
level of detail. The main problem is that these schemes increase
the size of the datasets, and they require that the entire dataset be
kept in main memory.

External-memory(or out-of-core) techniques solve this problem for
datasets larger than the main memory [5]. The idea is to store the
geometric data in disk. Then the data is preprocessed to obtain a
set of view-dependent geometry trees that are I/O efficient. These
trees are hierachical multirresolution structures. During run-time
navigation, this technique keeps all the geometry trees in disk. In
main memory it only stores those active trees that are necessary to
render the current level of detail, plus some prefetched trees that
are likely to be needed in the near future.

2.4 OpenGL ES (OpenGL for Embedded Sys-
tems)

OpenGL ESis a low-level, lightweight API for advanced embedded
graphics using well-defined subset profiles ofOpenGL. It provides
a low-level applications programming interface (API) between soft-
ware applications and hardware or software graphics engines.

This standard 3D graphics API for embedded systems makes it
easy and affordable to offer a variety of advanced 3D graphics
and games across all major mobile and embedded platforms. Since
OpenGL ES(OpenGL for Embedded Systems) is based onOpenGL,
no new technologies are needed. This ensures synergy with, and a
migration path to, fullOpenGL, the most widely adopted cross-
platform graphics API.

Three-dimensional graphics on mobile devices have made substan-
tial progress since the introduction ofOpenGL ES. Currently only
a few devices contain an integrated chip that supports this technol-
ogy (see [3] for an example). Manufacturers are now beginning to
add hardware graphics to the new generation of handheld devices.

The lack of hardware accelerated graphics in handheld devices has
motivated the development of Klimt [9]. Klimt is an open-source
software library that implements theOpenGL ESinterface.

3. OUR APPROACH
In this paper we address the problem of rendering complex three-
dimensional scenes on mobile computer devices. The issue is that
the scene does not fit in the devices’s main memory. So we use
out-of-core storage and view-dependent simplification to keep the
smallest possible number of polygons stored in the mobile device
for rendering. To achieve this goal we employ multiresolution
meshes. In this Section we introduce our system’s architecture and
describe its different components.

3.1 Architecture
Our system’s client-server architecture is illustrated in Figure 1.
The system is split into three main subsystems: (i) the server sys-
tem capable of loading a 3D graphics scene and extracting the ge-
ometric data to be rendered at the client, (ii) the client application
that connects to the server and receives the data to render the scene.
and (iii) the communication layer that implements the communi-
cation protocols and an object/triangle cache to improve transfer
rates. Figure 2 shows the internal architecture of the server system
and the client applications.

Figure 1: System architecture

Figure 2: Internal architecture

3.2 Server System
The server loads a scene graph withOpenSceneGraphand begins
listening to connections. We useOpenSceneGraph(OSG) [13] to
store and manage complex 3D models. OSG is an open source high
performance 3D graphics toolkit, used by application developers
for visual simulation, games, modeling, virtual reality and scientific
visualization.

Once a client establishes a connection, the server creates a new
thread to manage the connection. Then the client sends the view-
ing parameters to the server, and the server configures the camera
inside OSG. After that, the server calls the cull process.

OSG implements culling methods that substantially reduce the ge-
ometry sent to the render stage. However, it does not support mul-
tiresolution meshes. So we merged themultitesselation library
(MT) [8] with OSG. That way we can manage large 3D scenes
with multiresolution. The MT library supports focusing on a given
volume of the scene for detailed extraction of the relevant geome-
try. Depending on the type of scene the volume can be a pyramid,

a 3D box or another object. Figure 3 shows an example with a 3D
box.

Figure 3: Multiresolution bunny rendered with OpenScene-
Graph. Note that the focus of the MT library, a 3D box, contains
a higher resolution representation of the surface of the bunny.

As for culling, we have created a new classExtractVisitorthat ex-
tends the standard classCullVisitor of OSG. A Visitor calls the
culling process and extracts the geometry to be rendered at the
client. For this purpose theVisitor uses the viewing parameters
and the geometry stored in the scene graph. We support all geo-
metric primitives supported by OSG. Formultiresolution meshes
we do extra work to extract the right level of detail. We create the
box that contains the viewing frustrum. Then we use this box to ex-
tract the appropriate resolution using the MT library. The geometry
thus obtained is sent to the client using the system’s communication
layer.

3.3 Client Application
We create a client application capable of establishing connections
to the server using integrated wireless technology. The client appli-
cation can also run on laptops and desktop computers with wireless
connectivity. Once the client establishes a connection, it creates a
communication thread. The communication thread sends the view-
ing parameters to the server and receives the geometry from the
server. The main thread of the client renders the scene and handles
the user’s interactions.

Our client application runs on both Win32 and PocketPC platforms.
Running the client on Win32 systems allows using a remote desk-
top or laptop to view the scene. To make this possible we use
the Pocketknifelibrary. PocketKnifeis an application framework
that supports multi-platform development for both x86 Windows
and Windows CE. This means that we can develop on a desktop
computer and compile for the PDA just for final tests and device-
dependent debugging.

The problem of rendering 3D graphics on mobile devices is greatly
simplified by OpenGL ES. Still, only a few devices implement
OpenGL ESin their graphics hardware. So we use a software solu-
tion: the Klimt library. This multi-platform library is a software im-
plementation ofOpenGL ESthat runs on both mobile devices and
desktop computers. On top of Klimt (orOpenGL ES) we developed
an object-oriented library,vrtRender, that provides an abstraction

for meshes, materials, light sources and textures. The client appli-
cation uses this rendering library that offers a higher-level interface
to OpenGL ES.

3.4 Communication Layer - The Scene Cache
The communication between the client and the server is handled
by a library we developed on top of standard Berkeley sockets.
The library implements data structures for client-server commu-
nication. Two data structures are usually exchanged between client
and server. The first one encapsulates the viewing parameters sent
by the client to the server. The second one maintains the scene
cache.

There are two copies of the scene cache. One is kept at the client
and the other at the server. The communication layer keeps both
copies synchronized at all times. During scene navigation the cache
is updated by the server for each new set of viewing parameters.
Then the cache is accessed by the client to retrieve the new geome-
try to be rendered. The goal of the cache is to exploit the temporal
coherence between consecutive frames. For small camera move-
ments we only need to make small changes to the (local) geometry
to be rendered.

The scene cache is organized in two levels: the scene cache itself
and the geometry cache. The scene cache mantains all the informa-
tion needed to render the scene, including the viewing parameters
and the geometry of the scene. The scene cache is invalidated when
the viewing parameters change. In that case, the server extracts the
new geometry visible, and passes it on to the communication layer.
Then the layer synchronizes the scene cache with the copy at the
client.

The geometry cache stores the polygon, color and normal data
associated to each geometric object. The geometry cache is up-
dated by the server when the scene cache is invalidated. To im-
prove efficiency the server determines which geometric objects are
already stored in the cache. Then it adds to the geometry cache
those objects that have become visible. The synchronization pro-
cess tests, for all cached geometries, a visibility marker generated
by the server. If the geometry is visible only ageometry cache idis
sent to the client. If the geometry is not visible, then the communi-
cation layer sends all that geometry information to the client.

The method is extended to support multiresolution meshes. In the
extraction process we determine if the multiresolution geometry is
changed. The idea is to test the bounding box of the visible MT
geometry with the last bounding box extracted. If there are changes
then we need to recompute the right level of detail and fill the cache
with the new MT geometry, then the syncronization process does
the rest for us. The system also computes anerror factor for the
MT geometry, making possible, for example, the extraction of more
detail for objects closer to the viewer.

This configuration prevents sending unnecessary mesh information
through the network. It also supports navigation through the ge-
ometry data stored in main memory at the client, even if the client-
server connection fails.

3.4.1 Double Buffer Cache
The main problem of this configuration is the concurrent access of
the scene cache by the two threads at the client: the main thread and
the synchronization thread. If we lock the cache during synchro-
nization, then the frame rate drops. Instead, we employ adouble

Figure 4: Double Buffer Cache operation. On the left is the state of the cache during the synchronization process. On the right is the
state of the cache right after swapping.

Figure 5: Our client system running on the PocketPC 2003 em-
ulator.

buffer cache. We mantain two buffers, one for the drawing process
and the other for the synchronization process. When the synchro-
nization process ends we swap buffers and prepare the system for
the next synchronization. That way the main thread can draw from
one buffer while the synchronization process updates the geometry
in the other buffer.

To avoid using too much memory for this cache, we only keep refer-
ences to the real geometry. We store the real geometry in a geome-
try manager. Then the two double buffer caches store pointers to the
real geometries handled by the geometry manager. This implies a
substantial savings, since the geometry itself is not replicated, only
the references. When swapping buffers, only the references need
to be updated, thus reducing the locking time of the main drawing
thread. Figure 4 shows the operation of thedouble buffer cache.

This configuration runs well for static geometries. For dynamic ge-
ometries, like multiresolution meshes, we need to keep replicated

 0

 20

 40

 60

 80

 100

 120

 0 10 20 30 40 50 60

"fps.txt" using 1:2

Figure 6: Frame rate of the MT bunny rendered on our test
PDA with changes in the geometry and one light. The peak
frame rate occurs due to culling when the bunny moves outside
of the viewing frustum.

information to avoid problems during navigation. For this kind of
geometries the client system receives the new geometry informa-
tion during the synchronization process. That information is stored
in auxiliary buffers. When the cache swap is performed, the system
sets the new level of detail to draw.

4. RESULTS
To test the implementation of our system we run the server on a
desktop PC and the client on different devices. We run the client
on a laptop with wireless access, on the PocketPC 2003 emulator
and on an HP ipaq 4150 running PocketPC 2003. Figure 5 shows
two images of the system running on the emulator.

We used a couple of scenes to test our system. Figure 11 shows
some images obtained from running our system with amultireso-
lution mesh made from a 2400-polygon bunny. Figure 12 shows

 0

 2

 4

 6

 8

 10

 12

 14

 0 5 10 15 20 25 30 35 40 45 50 55

"client-cache.txt" using 1:3

Figure 7: Cache misses of the MT bunny with dynamic geome-
try.

 0

 2

 4

 6

 8

 10

 12

 14

 16

 0 20 40 60 80 100 120

"fps.txt" using 1:2

Figure 8: Frame rate of the virtainer scene rendered on our test
PDA and no active lights.

the other test scene made of multiple static meshes representing a
container terminal. This scene was built usingvirtainer [10], a 3D
system to handle and render container terminals in real time.

To analyze our system we made some plots with the evolution of
the frame rate (see Figures 6 and 8) and the number of cache misses
during navigation (see Figures 7 and 9). The plots were made mov-
ing the camera along precomputed paths.

For the MT bunny scene the maximum number of triangles viewed
is at most 2400 when the geometry is close to the viewer and less
than 1500 when the geometry is far from the viewer. The geometry
changes resolution progressively during navigation. We observe
that the dynamic geometry mantains the frame-rate at the maximum
possible with the Klimt library. When the geometry is not visible
we appreciate a large increase in the frame rate.

Thevirtainer scene is more complex, containing many objects and
transformations. The precomputed path for the scene moves the
camera back and forth along a street with several blocks of con-
tainers on both sides.

 0

 50

 100

 150

 200

 250

 300

 350

 400

 0 20 40 60 80 100 120 140

"client-cache.txt" using 1:3

Figure 9: Cache misses of the virtainer scene.

 0

 50

 100

 150

 200

 250

 300

 350

 400

 0 20 40 60 80 100 120 140

"fps.txt" using 1:2

Figure 10: Frame rate of the virtainer scene rendered on desk-
top PC with accelerated graphics hardware.

We observe that the frame rate varies a lot when navigating through
thevirtainer scene. This variable frame rate is caused by the amount
of geometry visible from each camera position. Still, the frame
rates are not very large due to the limited capabilities of the Klimt
software rendering library. Figure 10 shows the frame rate obtained
when running the same test on a Win32 client with a high-end
graphics card. Note that the evolution of the frame rate is simi-
lar, but at a different scale. We conclude that the clients behave in
the same way whether we use or not accelerated hardware. This
implies that the problem of the PDA-based system is only due to
the use of a software renderer.

Table 1 summarizes the information showing the average frame-
rate achieve during the different tests. With the MT bunny and
making changes to the geometry, the client frame rate is roughly
8 f ps. With changes in the scene but a large number of static objects
the frame rate only drops to 7.7 f ps.

Finally, we have measured the latency of the client-server cache
synchronization process. Table 2 shows the average latency achieved
during the synchronization process and the maximum and mini-
mum times obtained for the two test scenes.

Figure 11: Some images of our system running with two connected clients, two test PDAs and a Desktop PC. Scene with dynamic
multiresolution bunny.

1 Light

Static Bunny 9.63f ps
Dynamic Bunny 8.16f ps
Virtainer Scene 7.76f ps

Table 1: Average fps of MT Bunny and Virtainer scene running
on our test PDA. Static Bunny is without changes in geometry
during navigation. Dynamic Bunny is with changes in visible
geometry during navigation. Virtainer is a scene with multiple
static geometries.

5. CONCLUSIONS AND FUTURE WORK
In this paper we introduce a system for interactive three-dimensional
rendering on mobile devices. We implement a client-server system
that delivers geometry to a mobile device and renders the geometry
on the device. For rendering we use Klimt, a software implemen-
tation ofOpenGL ESthat runs on PocketPC 2003. Our system will
thus run on future hardware implementations ofOpenGL ESfor
mobile and other devices.

The system’s server usesOpenSceneGraphand multiresolution mesh-

Average Min Latency Max Latency

Dynamic Bunny 0.23 s 0.121 s 0.288 s
Virtainer Scene 0.59 s 0.191 s 1.219 s

Table 2: Average, minimum and maximum latency of MT
Bunny and Virtainer scene running on our test PDA with wire-
less connection. The latency is measured from the time when
the server cache is filled until client cache is updated.

es for scene management. Given the camera parameters delivered
by the client, the server culls the scene graph and sends to the client
the geometry to be rendered. The geometry is cached in an ob-
ject/triangle cache managed by the system’s communication layer.

Our system improves on previous systems because we do not store
the entire mesh at the client. Instead we only send to the client those
polygons that are currently visible. Our system can be applied,
for example, to computer gaming and Augmented Reality systems
for remote process monitoring, museum guided tours, warehouse
management, etc.

We run tests with different scenes and concluded that our system

Figure 12: Some images of our system running on our test PDA. Scene of containers terminal (virtainer).

scales well as the size of the 3D scene grows. The systems runs
very well even with continuos changes in geometry. Our tests were
run on both static and dynamic scenes both with camera movement.
The advantage of the system is a notable bandwidth reduction when
there are no major changes in the viewing parameters.

In the future we would like to improve the triangle cache of our
system. The idea is to maintain a cache of multiresolution nodes
at the client using external memory view-dependent simplification
that supports multiresolution.

6. ACKNOWLEDGEMENTS
This work was supported by grants: TIC2002-0416-C03-01 of the
Spanish Ministry of Science and Technology, GV04B-497 2004-
2005 of Generalitat Valenciana and IST-004363 of the 6th Frame-
work Program of the European Union.

7. REFERENCES
[1] C.-F. Chang and S.-H. Ger. Enhancing 3d graphics on mobile

devices by image-based rendering. InIEEE Third
Pacific-Rim Conference on Multimedia (PCM 2002), 2002.

[2] B. D’amora and F. Bernardini. Pervarsive 3d viewing for

product data management.IEEE Computer Graphics and
Applications, pages 14–19, March/April 2003.

[3] Dell Computer Corporation,
http://www1.us.dell.com/content/products/productdetails.aspx/
axim x50v.Axim X50v Details, 2004.

[4] F. Duguet and G. Drettakis. Flexible point-based rendering
on mobile devices.IEEE Computer Graphics and
Applications, pages 57–63, July/August 2004.

[5] J. El-Sana and Y.-J. Chiang. External memory
view-dependent simplification. InEuroGraphics ’2000,
volume 19, 2000.

[6] J. El-Sana and A. Varshney. Generalized view-dependent
simplification. InProceedings EuroGraphics, 1999.

[7] L. D. Floriani, P. Magillo, and E. Puppo. Multiresolution
representation of shapes based on cell complexes. InDiscrete
Geometry for Computer Imagery, number 1568, pages 3–18.
Lecture Notes in Computer Science, 1999.

[8] L. D. Floriani, P. Magillo, and E. Puppo.The MT
(Multi-Tesselation) Package. Dipartimento di Informatica e
Scienze dell’Informazione, Universita’ di Genova,

http://www.disi.unige.it/person/MagilloP/MT/index.html,
2004.

[9] IMS Group, http://studierstube.org/klimt/.Klimt - the Open
Source 3D Graphics Library for Mobile Devices, 2004.

[10] P. Jorquera, J. Lluch, and R. Vivó. Virtainer, “walkthrough”
en apilamientos. InActas del XIII Congreso Espaol de
Informtica Grfica, CEIG’2003, pages 373–376, 2003.

[11] Khronos Group, http://www.khronos.org/opengles/.OpenGL
ES - The Standard for Embedded Accelerated 3D Graphics,
2004.

[12] P. Leroy.Pocket GL, 3D library for Pocket PC.
http://pierrel5.free.fr/, 2004.

[13] OSG Community, http://www.openscenegraph.org.
OpenSceneGraph - Open Source high performance 3D
graphics toolkit, 2004.

[14] A. Sanna, C. Zunino, and F. Lamberti. A distributed
architecture for searching, retrieving and visualizing
complex 3d models on personal digital assistants.Internet
Technology, 3(4):235–244, 2002.

[15] P.-P. V́azquez and M. Sbert. Bandwidth reduction techniques
for remote navigation systems. InInternational Conference
on Computational Science, pages 249–257, 2002.

[16] C. Woodward, S. Valli, P. Honkamaa, and M. Hakkarainen.
Wireless 3d cad viewing on a pda device. InProceedings of
the 2nd Asian International Mobile Computing Conference
(AMOC 2002), 2002.

[17] C. Zunino, F. Lamberti, and A. Sanna. A 3d multiresolution
rendering engine for pda devices. InSCI 2003, volume 5,
pages 538–542, 2003.

