
ARTICLE IN PRESS
0097-8493/$ - se

doi:10.1016/j.ca

�Correspond
fax: +349638 7

E-mail addr
Computers & Graphics 29 (2005) 203–208

www.elsevier.com/locate/cag
A polar-plane-based method for natural
illumination of plants and trees

Marı́a J. Vicent, Vicente Rosell, Roberto Vivó�

Dpto. SIC, Universidad Politécnica de Valencia, Camino de Vera s/n, 46022 Valencia, Spain
Abstract

We introduce an illumination method for outdoor scenes containing plants and trees. Our method supports

multiresolution plant and tree models based on random L-systems. The method includes modeling and rendering of the

sky at different times for different locations on the earth. We propose an efficient algorithm to illuminate the leaves of a

tree using form factors pre-computed with a polar-plane-based method. We also present two solutions to the visibility

problem, a heuristic solution and a solution integrated with the polar-plane method.

r 2005 Elsevier Ltd. All rights reserved.

Keywords: Natural lighting; Form factors; Plant and tree rendering
1. Introduction

Simulating light interaction with plants supports both

generating their appearance attributes, like color, bright-

ness and transparency, and simulating their growth and

their interaction with the environment. Rendering

realistic outdoor images with plants and trees requires

using lighting models that take into account natural

light sources, like the sky and the sun. Also, the

complexity of plant and tree models prevents the use

of traditional global illumination algorithms.

Most plant and tree rendering algorithms are based

on texture mapping. Jakulin [1] proposes an interactive

tree rendering algorithm that defines boxes or slicings

that contain the tree’s branches and leaves. Slicings are

defined for certain directions parallel to the ground.

They are divided into slices texture-mapped with those

branches and leaves that are closest to each slice. To

render the slices from an arbitrary direction, Jakulin
e front matter r 2005 Elsevier Ltd. All rights reserve

g.2004.12.005

ing author. Tel.: +349638 77795;

7359.

ess: rvivo@dsic.upv.es (R. Vivó).
blends the two slicings closest to the desired view.

Texture maps are rendered using ray-tracing software.

The method proposed by Meyer et al. [2] generates a

hierarchy of bidirectional textures (HBTs). For each

pair illumination direction-viewing direction, the meth-

od pre-computes a self-oriented impostor. At rendering

time, a new image is rendered by interpolating the

impostors closest to the desired pair illumination

direction-viewing direction.

Other plant and tree rendering algorithms use local

illumination models. For example, Qin et al. [3] propose

an algorithm that uses a set of 2D buffers containing

surface shading information.

Complex radiosity algorithms can also be used for

plant and tree rendering. Sillion [4], for instance, uses

hierarchical radiosity with grouping. Max et al. [5]

employ a radiance transport method. Their assumption

is that radiance depends only on the direction of the

light flow and the height with respect to the ground.

This makes the method applicable to dense vege-

tation, instead of single isolated trees. Hondermarck

and Chelle [6] use a nested radiosity method that

distinguishes between close and far radiosity, depending
d.

www.elsevier.com/locate/cag


ARTICLE IN PRESS
M.J. Vicent et al. / Computers & Graphics 29 (2005) 203–208204
on the distance between the polygons involved in the com-

putation. Recently, Soler and Sillion [7] proposed a method

based on hierarchical instantiation that identifies objects

that share a common behavior in the presence of light.

We want to use natural light sources for rendering

plants and trees. The most common approach divides

the sky into areas, each represented by a light source

located at infinity, exactly like the sun. Müller et al. [8]

and Daubert et al. [9] integrate natural light sources into

radiosity algorithms. The sky’s complex lighting features

have been modeled using specific methods like those

described in [10] and [11].

Summarizing, most of these plant and tree rendering

algorithms are good for dense vegetation. They even

achieve interactive rates using texture mapping without

natural lighting. Most global illumination methods use

hierarchical radiosity with clustering. They are highly

sensitive to the hierarchy’s quality.

We propose a lighting method for outdoor scenes with

plants and trees. We model the plants and trees using a

multiresolution representation based on random L-systems.

We describe how we model and render the sky at different

times of day and different places on the earth. With that

model we light the leaves of plant and tree models.
2. Polar-plane illumination

2.1. Sky model

Using any illumination method requires three steps: (i)

modeling the light sources, (ii) defining a method to deter-

mine how much light reaches each point in the scene, and

(iii) computing a color for each relevant point in the scene.

We use a sky model like the one described by

Preetham et al. [11]. The model is a triangle mesh that

approximates a hemisphere. We triangulate the hemi-

sphere one level at a time. Triangle vertices at the finest

level are the point samples we use to compute the

radiance. For each sky sample point we compute and

store its color as a function of time of day, day and

position on the earth (longitude and latitude).

This model represents the sky as a set of point light

sources located at infinity. These sources are later used

by an illumination algorithm to obtain the color of

certain surfaces with pre-determined orientations. Both

steps, computing the lighting from the sky and coloring

the surfaces, can be accomplished during pre-processing.

That way, at rendering time, we can illuminate a surface

with an arbitrary orientation by interpolating between

surfaces already illuminated.

2.2. Polar plane

The intensity arriving at any polygon can be

computed assuming that the polygon is located at the
center of the hemisphere representing the sky. This is

because we assume that the light arriving from the sky

does not depend on the height of the polygon above

ground.

Computing the illumination for any polygon is an

expensive task. Hence, we propose pre-computing the

illumination for a fixed set of orientations and storing it

in a look-up table. We determine the illumination of a

polygon with a non-pre-computed orientation by inter-

polating between the illumination information stored for

the four closest directions to the polygon’s orientation.

We use the polar-plane method to obtain the form

factors needed to determine the pre-computed illumina-

tions and the illumination of any given polygon,

including its visibility in the scene. In our illumination

model, the form factor is used to model the amount of

radiance emitted by a surface, the sky, which reaches

another surface, the leaves or the ground.

The polar-plane method computes form factors using

finite elements [12–14]. It uses an infinite plane parallel

to a differential surface area dAi containing the point of

interest x, whose form factor we want to calculate. The

polar plane can be divided into concentric rings, so that

each ring has the same form factor [15]. If we divide the

plane into n rings, then each ring has a form factor of

DFF ¼ 1/n. We also discretize each ring into m sectors

with the same angle. The form factor of each sector is

Dff ¼ 1/(nm). We can then compute the form factor of a

given polygon by adding the form factors of the sectors

covered by the polygon.
2.3. Polar plane for pre-determined orientations

We select a set of pre-determined orientations using

spherical coordinates defined on a hemisphere of radius

1. We identify each orientation by two angles ðy;fÞ that
represent elevation and azimuth.

The set of directions we obtain is (yi,fj) for i 2

½0 . . . ; stacks� and j 2 ½0 . . . ; slices� 1� where each yiþ1 is

obtained from yiþ1 ¼ yi þ Dy with y0 ¼ 0 and Dy ¼

p=ð2 	 stacksÞ; and each fjþ1 is obtained likewise by

discretizing an angle of 2p radians.
We assign to each sector the luminance of the portion

of the sky that projects onto that sector. The sum of the

luminances for all the sectors covered by a sky polygon

gives the maximum luminance associated to that

orientation for each hour. This is assuming that there

are no occlusion issues due to the presence of other

objects.

To assign a luminance to each sector we first

determine the sky triangle that the sector projects onto

(see Fig. 1). A sector projects onto a triangle if its center

(cx,cy,cz) projects onto the interior of the triangle. We

compute the luminance by interpolating between the

luminances at the three vertices of the sky triangle. The



ARTICLE IN PRESS

(cx,cy,cz)

Fig. 1. Projecting the center point of a sector onto the

hemisphere.

Fig. 2. Visibility_1. At 12 noon. Rendering time: 1 s.

M.J. Vicent et al. / Computers & Graphics 29 (2005) 203–208 205
total number of operations needed is minimal, since

every time we process a new sector we start with the

level-0 sky triangles and then we traverse the hierarchy

of subdivision triangles until a bottom-level triangle is

reached.

The center point of a sector is the intersection point

between the radius that halves the sector and a special

circumference. That circumference is defined to divide

the sector into two sub-sectors, each with the same form

factor.

For each pre-computed orientation we store the

normal to its associated polar plane, the maximum

luminance (color) for each hour, and the actual polar

plane. For each polar plane we store the radii of the

rings, the radii of the special circumferences described

above, and the center point of each sector. The radii of

the rings are the same for each orientation, since we use

the same plane subdivision scheme. For each sector we

also store the luminance associated to that orientation

for each hour.

2.4. Illumination for arbitrary orientations

The lighting of each leaf of a tree depends on its

orientation and its position, in that order. Each leaf is

modeled using a single polygon. If we know the leaf’s

orientation we can easily obtain the maximum lumi-

nance arriving at it. That luminance corresponds to the

visible portion of the sky at that time (hour of day). That

is only if the leaf is isolated, that is, there are no

occluders between the leaf and the sky.

The maximum illumination of an arbitrarily oriented

polygon, for a given time of day, is computed by

interpolating between those four pre-computed orienta-

tions closest to polygon’s orientation. Given an arbi-

trary orientation ðya;faÞ such that iDypyapði þ 1ÞDy
and jDfpfapðj þ 1ÞDf; the new orientation is located
between the orientations: (i,j), (i,j+1), (i+1,j), and

(i+1,j+1).
Fig. 3. Visibility_2. Estimating occlusion terms. At 12 noon.

Rendering time: 41 s.
3. Visibility

Tree leaves do not typically receive all the light

corresponding to their orientation, since the leaves are
not isolated and other neighboring leaves may occlude

some of the incident light. To obtain a more realistic

illumination we incorporate visibility into our lighting

algorithm.

We implement different visibility techniques that

trade off between rendering quality and rendering time.

We use two techniques, a heuristic technique that

obtains a visibility term V and other techniques based

on using the polar plane.

3.1. Heuristic visibility

Our first heuristic technique is called Visibility_1 (see

Fig. 2). Here the visibility factor depends on two values:

the cosine of the angle between the position vectors of

the leaf and the sun, and the distance from the leaf to the

center of the tree. This distance value takes into account

the fact that leaves inside the tree receive less light than

those on the outside.

This technique has the following problem: it is good

for trees with a compact set of leaves, but it does not

work well when the leaves are spread out. So, we

propose a second algorithm called Visibility_2 (see Fig.

3). This algorithm computes an estimate of the

percentage of the sky occluded for any given leaf i.

The estimate considers the number of leaves outside of

leaf i and approximates the luminance that those leaves

occlude. It takes into account the number of leaves

outside leaf i, the amount of light each leaf occludes and



ARTICLE IN PRESS

Pos[j]N[i]

N[j]

disij

(a)

N[i]

N[j]

disij

Pos[j]

(b)

N[i]

N[j]

disij

Pos[j]

(c)

Fig. 4. Parameters used in the estimation of the occlusion terms.

Fig. 6. Visibility_PolarPlane. At 12 noon. Rendering time:

3260 s.

Fig. 5. Visibility_3. Estimating occluded polar-plane sectors.

At 12 noon. Rendering time: 73 s.

M.J. Vicent et al. / Computers & Graphics 29 (2005) 203–208206
the dispersion of the portions of the sky that are

occluded. The occlusion term for leaf i partially

occluded by leaf j is determined using the distance

between both leaves and the cosine of the angle between

their normals N[i] and N[j] (see Fig. 4(a)). Figs. 4(b) and

(c) show the two extreme cases, when the occlusion is

maximized and when it is minimized.

We implement a third visibility algorithm, Visibility_3

(see Fig. 5). We approximate the visibility of a leaf by

estimating the number of occluded polar-plane sectors.

The occlusion term Oj depends on the distance disij

between the leaves i and j, the angle between both leaves’

normals, and the angle between the normal to leaf i and

the position vector of leaf j (see Fig. 4). Also, this

algorithm takes into account the orientation of the leaf

with respect to the sun. If the leaf is oriented towards the

sun, the luminance of the visible sectors is increased.
3.2. Polar-plane-based visibility

We present a visibility algorithm based on the polar

plane, Visibility_PolarPlane (see Fig. 6). To compute

visibility for leaf i, we obtain its polar plane by

interpolating between the planes oriented closest to the

leaf’s orientation. Each sector of the leaf’s polar plane

contains the luminance of the part of the sky that

projects onto it. The sum of the sectors’ luminances is
the maximum possible radiance arriving at the leaf given

its orientation and the time of day.

The rendering algorithm uses an auxiliary occlusion

matrix that contains one entry per sector. Each entry has

a toggle value that says whether the sector is occluded or

not. To light leaf i we project onto its polar plane all the

leaves j located in i’s visible subspace. For each leaf j we

convert its projected vertices to polar coordinates and

we determine which sectors are covered by the projec-

tion. A sector is considered covered when its central

point, as defined above, is inside the projected polygon.

To speed up this algorithm we only process those

sectors located between two rings: the largest ring and

the smallest ring covered by leaf j’s projection. The

largest ring is given by the projected vertex located

farthest from the rings’ center. The smallest ring is given

by either the rings’ center or the projected vertex closest

to the rings’ center.

The following algorithm computes the luminance at

leaf i, for any given time of day h:

Visibility (i,h)

For each ring c

For each sector s

Occlusion[c][s]’ false

Lum [I][h]’Maximum_Luminance [i][h]

For each leaf j

Project_Onto _Polar_Plane (j)

Cmin’Compute smallest ring covered by projection



ARTICLE IN PRESS

Fig. 7. Left, at 7:00am; center, at 12:00noon; and right, at 6:00pm.

M.J. Vicent et al. / Computers & Graphics 29 (2005) 203–208 207
Cmax’Compute larges ring covered by projection

For each ring c between Cmin and Cmax

For each sector s

If (Interior(c,s))

If (Occlusion [c][s] ¼ false)

Occlusion [c][s]’true;

Luminance[i][h]’Lum[i][h]-Ppolar_i

[c][s][h]

3.3. Conclusions

Figs. 2–6 show two trees with 3000 leaves rendered

using the algorithms described in this section. Each

caption shows the time of day and the rendering time,

which includes pre-processing time. The fastest method

is heuristic visibility; the slowest method is polar-plane-

based visibility. We conclude that fast low-precision

algorithms are better for trees located far from the

viewer, since the increase in quality is not noticeable

when using high-precision algorithms.
4. Rendering an example tree

In this section we apply our polar-plane-based

algorithm to the rendering of an example tree. The tree

is represented using a multiresolution model based on

random L-systems [16]. The model groups leaves into

clusters associated to branches, and stores a bounding

box for each cluster of leaves.

The ground is a quadrilateral mesh defined on the XY

plane. The vertices have been randomly perturbed, so

that we can simulate certain reflection conditions that

affect both its color and the shadow cast by the tree.

For each tree branch we store a data structure that

contains:


 an identifier,



 a pointer to the graphics primitive representing the
branch: we use truncated cones, and store length and

cap radii for each cone,


 a transformation matrix to locate the branch within
the tree, and


 a toggle that tells whether the branch has leaves or
not.

For each leaf we store the following information: its

position, its normal, the coordinates of its vertices and

the illumination for each time of day. For each random

orientation related to a leaf, we store the polar plane in

the same way as we do for pre-calculated orientations.

But we add an extra flag that tells whether a sector is

visible or not for that orientation. Finally, we compute

the luminance of each sector by interpolating the

luminances of those sectors corresponding to the closest

pre-computed orientations.

Fig. 7 shows our example tree rendered using our

illumination method. We have used luminance and

chromaticity values for the sky at 14 different times of

the day ranging from 6:00am to 7:00pm. The images

were generated for Julian day 175. The location of the

tree is in Valencia at 0.269171 longitude west and

39.285831 latitude north.
5. Conclusions and future work

We introduce a natural illumination algorithm that

models the sky, the ground and the vegetation of an

outdoor scene. We show how our algorithm illuminates

leaves with random orientations and supports changes

in illumination conditions.

The main part of our algorithm is the visibility

method it implements to shade the leaves. The method

approximates the amount of light arriving at a leaf,

given the leaf’s position and orientation and the set of

leaves that occlude the light arriving at the leaf from the

sky. We propose heuristic visibility methods that are

faster than its physically based counterparts.

We can easily apply our algorithm to scenes contain-

ing multiresolution tree models generated with random

L-systems. The models support changes in the leaf

distribution to adapt it to the tree’s topology. The



ARTICLE IN PRESS
M.J. Vicent et al. / Computers & Graphics 29 (2005) 203–208208
algorithm renders the scene including the ground and

the shadows cast by the tree.

We can improve both the speed and the quality of the

results of our illumination algorithm. Here is a list of

suggested improvements:


 Apply multiresolution techniques to the structure of
the polar planes. Illumination could then be com-

puted with more or less precision depending on

viewing distance. For long distances computations

could be faster using box–leaf approach instead of a

leaf–leaf approach.


 Increase realism by improving the geometric model of
the leaves and by including parameters to character-

ize the leaves’ tissue.


 Implement a multiresolution representation for the
branches of the tree. Such a representation can be

used to generate branch and leaf textures and adapt

them to different illumination conditions.
Acknowledgments

This work was partially supported by Grant TIC2002-

04166-C03-01 of the Spanish Ministry of Science and

Technology.
References

[1] Jakulin A. Interactive vegetation rendering with slicing

and blending. In: Proceedings of the short papers

EUROGRAPHICS 2000.

[2] Meyer A, Neyret F, Poulin P. Interactive rendering of trees

with shading and shadows. In: Proceedings of the

Eurographics rendering workshop 2001.

[3] Qin X, Nakamae E, Tadamura K, Nagai Y. Fast photo-

realistic rendering of trees in daylight. Computer Graphics

Forum 2003;22(3):243–52.

[4] Sillion F. Clustering and volume scattering for hierarchical

radiosity calculations. In: Proceedings of rendering tech-

niques, 1994.
[5] Max N, Mobley C, Keating B, En-Hua W. Plane-parallel

radiance transport for global illumination in vegetation.

In: Proceedings of rendering techniques’97, Springer

Computer Science 1997; p. 239–50.

[6] Hondermarck J, Chelle M, Renaud C, Andrieu B.

Parallel form factors computation for radiative trans-

fers in vegetation. In: Proceedings of the second euro-

graphics workshop on parallel graphics and visualization,

1998.

[7] Soler C, Sillion F. An efficient instatiation algo-

rithm for simulating radiant energy transfer in plant

models. ACM Transactions on Graphics 2003;22(2):

204–33.

[8] Müller S, Kresse W, Schoeffel F. A radiosity approach for

the simulation for the simulation of daylight. In: Proceed-

ings of eurographics rendering workshop, 1995.

[9] Daubert K, Schirmacher H, Sillion F, Drettakis G.

Hierarchical lighting simulation for outdoor scenes. In:

Proceedings of rendering techniques’97, Springer Compu-

ter Science, Berlin: Springer; 1997. p. 229–38.

[10] Perez R, Seals R, Michalski J. All-weather model for sky

luminace distribution—Preliminary configuration and

validation. Solar Energy 1993;50(3):235–45.

[11] Preetham J, Shirley P, Smits B. A practical analytic model

for daylight. In: Computer Graphics Proceedings 1999,

SIGGRAPH’99, p. 91–100.

[12] Cohen MF, Greenberg DP. The hemi-cube: a radiosity

solution for complex environments. Computer Graphics

1985;19(3):31–40.

[13] Sillion F, Puech C. A general two-pass method integrating

specular and diffuse reflection. Computer Graphics

1989;23(3):335–44.

[14] Baum DR, Rushmeier HE, Winget JM. Improving

radiosity solutions through the use of analytically deter-

mined form-factors. Computer Graphics 1989;23(3):

325–34.

[15] Vivó R, Vicent MJ, Lluch J, Molla R, Jorquera P. Study of

the form factor calculation by single polar plane. In:

Proceedings of the IASTED international conference on

visualitation imaging and image processing, 2001.

[16] Lluch J, Camahort E, Vivó R. Procedural multirresolution

for plant and tree rendering. In: Proceedings of second

international conference on virtual reality, Computer

Graphics, Visualization and Interaction in Africa. AFRI-

GRAPH, 2003, p. 31–8.


	A polar-plane-based method for natural �illumination of plants and trees
	Introduction
	Polar-plane illumination
	Sky model
	Polar plane
	Polar plane for pre-determined orientations
	Illumination for arbitrary orientations

	Visibility
	Heuristic visibility
	Polar-plane-based visibility
	Conclusions

	Rendering an example tree
	Conclusions and future work
	Acknowledgments
	References


