
Continuous LODs and Adaptive Frame-Rate Control for Spherical Light Fields

Alejandro Domingo, Miguel Escrivá, Francisco Abad, Javier Lluch, Emilio Camahort
{adomingo, mescriva, fjabad, jlluch, camahort}@dsic.upv.es

Computer Graphics Section
Departamento de Sistemas Informáticos y Computación

Universidad Politécnica de Valencia
Camino de Vera s/n, 46022 Valencia, Spain

Abstract
Light fields are an image-based representation that rep-

resents objects using sets of digital images. Light fields are
usually comprised of 4D radiance data that can be used for
3D rendering or 4D display on autostereoscopic and cer-
tain types of volumetric displays. We present a modeling
and rendering system for spherical isotropic light fields.
These are made of images captured with cameras placed
on a sphere’s surface looking inwards. The system imple-
ments a multiresolution representation for both the spatial
and the directional domains of the light field. This repre-
sentation supports continuous levels of detail and adaptive
frame rate control.

Keywords— Light Field Modeling and Rendering, Mul-
tiresolution, Continuous Levels of Detail, Adaptive Frame
Rate Control

1 Introduction
3D spatial and autostereoscopic displays provide mul-

tiple viewers with a 3D image of the object of inter-
est [9, 10, 12, 13, 14]. These devices require a source of 3D
information, that usually comprises huge amounts of data.
4D light fields are an efficient technique to store and query
3D information and can be used to provide those devices
with arbitrary views of an object.

Light fields are a Computer Graphics modeling tech-
nique that relies on sets of images to represent highly com-
plex geometric objects. Storing and rendering these objects
using regular geometric techniques is not efficient. Instead
collections of images in different arrangements are used to
model them.

High-resolution light-field models may contain thou-
sands of images. Efficient algorithms for storing and re-
trieving data and rendering have to be carefully designed.
On the other hand, they can obtain very realistic images
and are the representation used by autostereoscopic and
certain volumetric devices.

Current light-field models use different arrangements.
Planar light-fields select a planar grid of camera positions
and take an image for each camera. They require multi-
ple instances of those planar configurations, called slabs
to represent entire objects [6]. Spherical light-fields select
camera positions on a sphere’s surface pointing to the cen-
ter of the sphere.

We are concerned with spherical light-field representa-
tions. This representation allows us to render models at
interactive rates. This interactivity is supported by the mul-
tiresolution properties of the data structure, the possibility
of using continuous levels of detail (LODs) and the adap-
tive frame-rate control. Our models can be efficiently dis-
played using a two-level cache with compression and lazy
image retrieval.

In the following section we survey light fields and au-
tostereoscopic and volumetric displays. Then, we intro-
duce our spherical multiresolution representation and de-
scribe how to build and render it. In Section 4 we show
how the rendering algorithm can be used with the mul-
tilevel cache to achieve adaptive frame-rate control. The
next section is devoted to our implementation and results.
Finally, we present some conclusions and directions for fu-
ture work.

2 Background
Formally, a light field represents the radiance flowing

through all the points in a scene in all possible direc-
tions [5, 6]. For a given wavelength, a static light field
can be represented as a 5D scalar function L(x, y, z, θ, φ)
that gives radiance as a function of location (x, y, z) in 3D
space and the direction (θ, φ) the light is traveling. The
light-field function can be simplified to consider only the
values it takes in free space, thus reducing the 5D domain
of the light-field to 4D.

Light-fields are a class of image-based models. They
have three main advantages: (i) their rendering complexity
depends only on the complexity of the output images, (ii)



(a) Subdivision of a triangle. (b) The first and second LODs.

Figure 1: Subdivision of directional space: each triangle represents a pencil of directions.

compression and simplification algorithms perform better
on image data than in geometric data, and (iii) they can be
combined with geometric models to produce hybrid repre-
sentations.
2.1 Light-Field Models

Planar light fields were first introduced by Levoy and
Hanrahan [6]. A similar approach with geometric proxies
was proposed by Gortler et al. [5]. Both representations
are anisotropic because they require multiple slabs in order
to represent an object and multi-slab rendering produces
artifacts when crossing slab boundaries [8].

Typical arrangements of planar light fields contain 32×
32 or 64 × 64 cameras arranged in a regular planar grid.
Each image typically contains 256×256 or 512×512 pix-
els each. To reduce the number of images to retrieve and
render, Sloan et al. triangulate the camera plane [7]. They
remove all the cameras that fall within a triangle. Then,
they use the cameras located at the triangles’ vertices to
render their images using image warping.

Spherical light fields were proposed by Camahort et
al. [8]. They are isotropic because they sample the light
field of an object in a (nearly) uniform fashion. This
reduces the number of artifacts when rendering the ob-
ject’s light field from different viewpoints. We have imple-
mented a light-field modeling and rendering system based
on spherical isotropic light fields [16]. The system can be
extended to support modeling of multiple objects and geo-
metric information [18].
2.2 Autostereoscopic and Volumetric Displays

3D spatial and autostereoscopic displays are becom-
ing the subject of recent research efforts in the Computer
Graphics hardware community [10, 13]. They provide one
or more viewers with a 3D image of an object without the
need of goggles or other invasive devices.

In practice autostereoscopic devices display a 4D ver-
sion of the light-field function. This version is typically
based on the two-plane parameterization (2PP) that was
originally inspired by holography and, specifically, by
holographic stereograms [2, 3]. This parameterization sim-

plifies rendering by avoiding the use of cylindrical and
spherical projections during the light-field reconstruction
process.

Autostereoscopic devices typically display planar light
fields [9, 14]. Volumetric displays are also becoming
common in Computer Graphics applications [1, 4]. They
are able to display volumetric data, 3D geometric data or
spherical light fields [11, 15, 17].

3 Multiresolution Spherical Light Fields
A static 4D spherical light field is a scalar function

that returns radiance along the lines intersecting the unit
sphere [8]. The object of interest is located inside the
sphere. In our representation each line is parameterized
by its direction and its intersection point with a 2D plane
orthogonal to the line direction. To obtain a discretization
of this line domain we discretize the 2D set of all 3D direc-
tions. Then, we discretize each plane by superimposing a
regular grid to obtain the light-field images. These images
are parallel projections along the discrete directions.
3.1 Multiresolution Representation

A multiresolution representation is built as follows.
We start approximating the sphere using an icosahedron
and choosing as initial directions those passing through
the centers of the icosahedron’s faces. Then, we subdi-
vide each triangle into four sub-triangles as shown in Fig-
ure 1(a). The first two resolution levels are shown in Fig-
ure 1(b). They have 20 and 80 triangles respectively, cor-
responding to 20 and 80 directional samples. Each sam-
ple approximates the pencil of directions passing through
its associated triangle and the center of the sphere. If we
further subdivide we obtain LODs with 20 ∗ 4level pen-
cils where level ≥ 0. For the positional samples we use
standard mipmaps of the images taken along each direc-
tion (see Figure 2).

The DPP rendering algorithm is an adapted version of
the Lumigraph algorithm [5, 16]. Rendering using a spher-
ical light field is done by placing the camera frustum in-
side of the tessellated sphere. The rendering algorithm de-



Figure 2: Mipmap pyramid for one of the directional samples of the dataset phot

Figure 3: A triangle and its children with LODs n, n + 1/3, n + 2/3, and n + 1. Gray levels denote the alpha weights.

termines which pencils of directions intersect the viewing
frustum. Triangles falling within the frustum are texture
mapped with the images stored in the light field. A specific
texture matrix is computed for each triangle depending on
the relative position of its image with respect to the view-
ing parameters. In our system, the rendering hardware is in
charge of the reprojection and display tasks. Each visible
triangle Tk is rendered with a texture map containing a por-
tion of the texture. That portion is determined by the geo-
metric relationship between the viewer’s position and the
light-field model as given by its center and orientation. We
determine the correct texture coordinates by casting three
rays from the viewpoint, one through each of the vertices
of Tk.

3.2 Continuous Levels of Detail

The main problem of discrete LOD techniques is the
popping effect. This effect appears as artifacts in the im-
age when an object suddenly changes its LOD. Our sys-
tem creates smooth transitions between LODs in both the
positional and the directional domains. For the positional
domain we interpolate between consecutive mipmap lev-
els. For the directional domain we do a linear interpolation
between the triangle associated to a pencil and the trian-
gles associated to its children. We α-blend the parent with
a value t ∈ [0, 1], that determines the weight associated
to the parent’s LOD. Likewise, we α-blend the childrens
using an α value of 1− t. This is illustrated in Figure 3.

4 Adaptive Frame Rate Control
Our multiresolution representation supports adaptive

frame rate control. The number of pencil triangles to ren-
der can be decided on-line by choosing which LOD to dis-
play. The rendering time depends on the number of trian-
gles inside the rendering window. On the other hand, the
number of triangles is usually small. The real bottleneck of
the algorithm is the image caching process. Images need
to be loaded into the GPU to texture-map the triangles. So,
first we will explain how the images are cached and then
how to compute the number of pencil triangles to render.
4.1 Light-Field Image Caching

Light-field images are stored in a three-level cache hi-
erarchy. As the light-field models can require up to several
gigabytes of memory, they must be stored in a hard drive.
Images that are not stored in the cache, but are needed to
render the pencils inside the frustum are loaded on demand
into main memory, and then into the GPU.

Our caching algorithm uses out-of-core techniques.
These techniques support lazy image caching. Upon ini-
tialization all 20 images of the first LOD are loaded into the
GPU memory. Then images are loaded from main memory
or retrieved from disk and then loaded into the GPU for tex-
ture mapping the pencil triangles. When an image needed
to render a given triangle is not available in memory, its
parent image can be rendered instead. Since the first LOD
of images is always stored in the GPU, there is always a
parent image ready to use. Later, as images associated to
children triangles are available, the display can be updated.
The frames rendered using parent images are usually less



(a) 3 (b) 3 1
3

(c) 3 2
3

(d) 4

Figure 4: Test scene with LODs 3, 3 1
3 , 3 2

3 , 4

detailed than they should, but their quality improves as the
children images are loaded into the GPU.
4.2 Selecting the Number of Pencil Triangles

To achieve adaptive frame-rate control the maximum
number of triangles to render in each frame has to be
computed. This is done as follows. The solid angle of
a square viewing window with a given fov is Ω(fov) =
2fov sin(fov/2). The solid angle subtended by each tri-
angle is the solid angle of the sphere (4π) divided by the

total number of triangles at the given LOD. The number of
triangles projected by a window with fov field of view is:

p = D ∗ fov/(2π) ∗ sin(fov/2)

where the number of pencils in the current LOD level is
given by D = 20 ∗ 4level For non-integer LODs D is
four times larger than the lowest integer LOD’s, namely
D′ = 1.25 ∗ 20 ∗ 4dlevele Still, only three times more im-
ages are needed because center sub-triangles use the same



Figure 5: Rendering time (in ms) and expected rendering time using level 4

Figure 6: Rendering time with adaptive frame control starting with level 4, limiting the frame rendering time to 100ms

image as their parent.
A better approximation can be obtained by simulating

the rendering of each level of the geode and computing the
number of images stored in the cache for each level. This
is more precise but requires preprocessing the data before
rendering, and it can not predict how the user will interact
with the system.

We computed the rendering times for each LOD in sev-
eral experiments and we obtained an approximation of the
coefficients of the following linear function:

t = tmainNmain + tgpuNgpu + tdiskNdisk + tsetup

where tmain, tgpu and tdisk are the times it takes to render
a triangle depending on where its associated texture image
is located (main memory, video memory or disk). Nmain,
Ngpu and Ndisk are the number of triangles rendered in
each situation. tsetup is the constant time it takes to setup
the rendering of any frame.

When running the simulation, the first several frames
do not provide enough samples to obtain good estimates
about the rendering times. Two methods can be used to
solve this problem. In the initial moments of the render-
ing lower LODs can be used, incrementing them as the
simulation proceeds. Or some initial estimates for the ti
can be obtained from the data and machine specifications

(e.g.: the hard drive’s latency and data transfer rates, and
the memory to GPU transfer time). Memory to GPU time
depends on polygon transfer rate and, most importantly, on
the texture transfer rate.

When transfer rates are available, transfer times per tri-
angle can be computed using the transfer rates and the size
of the data to be transferred. For example, a single pencil
triangle image typically takes 40 KBytes in disk, and 256
KBytes of GPU memory in mipmap format. The initial set
of 20 images loaded for the lowest LOD takes 5 MBytes
of GPU memory. Time estimates for our test machine are
given in the next section.

5 Implementation and Results
We tested our system on a Pentium IV at 3Ghz with

1GB of main memory, equipped with an ATI Mobility
Radeon X600 graphics card with 128MB of memory. Fig-
ure 5 shows the expected rendering time versus the mea-
sured rendering time, forcing the level of detail to 4. Note
the accuracy of the estimated values. In the test the cam-
era is moved along a circular path in steps of 5 degrees per
frame and the expected time is calculated using linear re-
gression. The measured times in our system are: setup ren-
dering time is tsetup = 272ms which depends on the LOD
and the processing and memory speed of the test computer,



disk access time is tdisk = 19.1ms and main memory to
GPU transfer time is ttransfer = 0.01ms.

Figure 6 shows the rendering time and LOD using frame
rate control.For each frame, the highest LOD that satisfies
the frame rate required is selected.

Videos of our system can be found on the web
page http://www.sig.upv.es/ALF/papers/
gmai2007/

6 Conclusions and Future Work
We have presented a method to interpolate between dif-

ferent levels of detail in spherical light fields, and a method
to compute the time that an LOD takes to render. From
these methods we have built a rendering application that
changes continuously the resolution of a light field to keep
the frame rate at interactive rates.

We are planning on extending our light-field models
with depth information. This will allow us to display mul-
tiple light fields and to combine our models with geometry
to display annotated/augmented light fields on autostereo-
scopic and certain types of volumetric displays. We are
also planning to add interpolation in the directional do-
main.

Acknowledgements
This work was partially supported by grants TIN2004-

203303-E and TIN2005-08863-C03-01 of the Spanish
Ministry of Education and Science and by the GAME-
TOOLS STREP project IST-004363 of the 6th Framework
Program of the European Union.

References
[1] Parker, E., and Wallis, P A. Three-dimensional

cathode-ray tube displays, J. IEEE, 1948, 95, pp.371–
390

[2] S. A. Benton. Survey of holographic stereograms. In
Processing and Display of Three-Dimensional Data,
volume 367, pages 15–19, 1982.

[3] K. Haines and D. Haines. Computer graphics for
holography. IEEE Computer Graphics and Applica-
tions, pages 37–46, January 1992.

[4] Blundell, B.G.; Schwarz, A.J.; Horrell, D.K., Volu-
metric three-dimensional display systems: their past,
present and future. Engineering Science and Educa-
tion Journal , vol.2, no.5pp.196–200, Oct 1993

[5] Steven J. Gortler, Radek Grzeszczuk, Richard
Szeliski and Michael F. Cohen. The Lumigraph. In
Proc. SIGGRAPH ’96

[6] Marc Levoy and Pat Hanrahan. Light Field Render-
ing. In Proc. SIGGRAPH ’96

[7] Peter-Pike Sloan, Michael F. Cohen and Steven J.
Gortler. Time Critical Lumigraph Rendering. In Proc.
1997 Symposium on Interactive 3D Graphics

[8] Camahort E., Lerios A., Fussel D. Uniformly Sam-
pled Light Fields. In Proc. Eurographics Rendering
Workshop ’98 (1998), pp. 117–130

[9] A. Isaksen, L. McMillan, and S. J. Gortler. Dy-
namically reparameterized light fields. In Proc. SIG-
GRAPH ’00, pages 297–306, 2000.

[10] K. Perlin, S. Paxia, and J. S. Kollin. An autostereo-
scopic display. In Proc. SIGGRAPH ’00, pages 319–
326, 2000.

[11] Favalora, G. E., Napoli, J., Hall, D. M., Dorval, R.
K., Giovinco, M. G., Richmond, M. J., Chun, W. S.
100 million-voxel volumetric display. Proceedings of
the SPIE, vol 4712, 300–312, (2002)

[12] Sullivan, Allan. 3-Deep. IEEE Spectrum, pages 2227,
April 2005.

[13] T. Balogh, T. Forgcs, O. Balet, E. Bouvier, F. Bettio,
E. Gobbetti, and G. Zanetti. A scalable holographic
display for interactive graphics applications. IEEE
VR 2005 Workshop on Emerging Display Technolo-
gies, March 2005.

[14] R. Yang, S. Chen, X. Huang, S. Li, L. Wang, and
C. Jaynes. Towards the light field display. IEEE VR
2005 Workshop on Emerging Display Technologies,
March 2005.

[15] Won-Suk Chun, Joshua Napoli, et al. Spatial 3-D In-
frastructure: Display-Independent Software Frame-
work, High-Speed Rendering Electronics, and Sev-
eral New Displays. In Proceedings of SPIE-IS&T
Electronic Imaging, SPIE Vol. 5664, pp. 302-312
(2005).

[16] Escrivá M., Domingo A., Abad F., Vivó R., Cama-
hort E. Modeling and Rendering of DPP-Based Light
Fields. In Procededings of GMAI’2006 (London,
UK, July 2006), IEEE Computer Society.

[17] Takafumi Koike, Michio Oikawa, Nobutaka Kimura,
Fumiko Beniyama, Toshio Moriya, and Masami Ya-
masaki, Integral videography of high-density light
field with spherical layout camera array. In Proceed-
ings of SPIE Int. Soc. Opt. Eng. 6055, 605510 (2006)

[18] A. Domingo, M. Escrivá, F.J.Abad, R.Vivó,
E.Camahort, Introducing Extended and Augmented
Light Fields for Autostereoscopic Displays, 3rd
Ibero-American Symposium in Computer Graphics,
SIACG 2006, Short Papers, pp. 64-67, July 2006

http://www.sig.upv.es/ALF/papers/gmai2007/
http://www.sig.upv.es/ALF/papers/gmai2007/

	Introduction
	Background
	Light-Field Models
	Autostereoscopic and Volumetric Displays

	Multiresolution Spherical Light Fields
	Multiresolution Representation
	Continuous Levels of Detail

	Adaptive Frame Rate Control
	Light-Field Image Caching
	Selecting the Number of Pencil Triangles

	Implementation and Results
	Conclusions and Future Work

