
Automatic Impostor Placement for Guaranteed Frame Rates
and Low Memory Requirements

Stefan Jeschke †, ∗ Michael Wimmer† Heidrun Schumann∗ Werner Purgathofer†

†Vienna University of Technology ∗University of Rostock

Abstract

Impostors are image-based primitives commonly used to replace
complex geometry in order to reduce the rendering time needed for
displaying complex scenes. However, a big problem is the huge
amount of memory required for impostors. This paper presents
an algorithm that automatically places impostors into a scene so
that a desired frame rate and image quality is always met, while at
the same time not requiring enormous amounts of impostor mem-
ory. The low memory requirements are provided by a new place-
ment method and through the simultaneous use of other accelera-
tion techniques like visibility culling and geometric levels of detail.

CR Categories: I.3.3 [Computer Graphics]: Picture/Image
Generation—Viewing Algorithms I.3.7 [Computer Graphics]:
Three-Dimensional Graphics and Realism—Virtual Reality

1 Introduction

While the performance of graphics hardware keeps increasing at
an enormous pace, the geometric and visual complexity of virtual
environments is growing even faster. In many applications, such as
flight or driving simulators, virtual reality, or games, it is desirable
to guarantee interactive or even real-time frame rates.

To achieve a reduction of the time required to render a complex
scene, three major strategies have been proposed. Visibility culling
techniques determine those parts of a scene that are potentially vis-
ible. However, the geometry that is actually visible may still over-
whelm the capabilities of the graphics hardware. Second, geometric
simplification techniques substitute complex objects with coarser
geometric representations for more distant views without loss in
image quality. Unfortunately, geometric simplification is still not
useful for arbitrary models. Third, image-based rendering tech-
niques can be used where geometric simplification fails. Arbitrary
scene parts can be represented by so-called impostors made up from
simple textured quads, polygon meshes, LDIs, or point clouds. Im-
postors provide a correct representation only when displayed for a
bounded viewing region called view cell.

However, impostor techniques suffer from a number of drawbacks.
Dynamic impostors (which are generated on the fly) place a high
burden on the runtime system, whereas techniques relying on pre-
calculation suffer from one or more of the following problems:

• image artifacts (e.g., image gaps through disocclusions),

∗{stefan.jeschke|schumann}@informatik.uni-rostock.de
†{wimmer|wp}@cg.tuwien.ac.at

Figure 1: Example of automatic impostor placement (with the im-
postor in the circle, shown together with its shaft of validity.

• very high memory consumption, and

• long preprocessing times.

In this paper, we present an automatic impostor placement algo-
rithm that addresses all of these problems. Given a static scene and
a view space, an impostor placement defines for every view posi-
tion which objects should be displayed as impostors, so that both
a minimum frame rate and a minimum impostor image quality are
guaranteed. The optimization problem is to minimize the amount
of memory for all impostors.

Our algorithm first identifies those views that cannot be rendered
sufficiently fast. Second, a large set of impostor candidates is gen-
erated. An impostor candidate is a scene part together with a view
cell from where the impostor meets the desired image quality. Fi-
nally, a greedy optimization algorithm selects candidates to serve
as impostors based on the rendering acceleration they provide and
their required memory. This is done until all views can be rendered
with the desired frame rate, providing a (soft) frame rate guarantee.

Three main contributions are provided by the new approach in com-
parison to previous work: First, our algorithm avoids the gener-
ation of similar impostors for adjacent viewing regions, keeping
the memory requirements so low that they often fit completely into
graphics memory. This is achieved because instead of using a fixed
set of view cells and a separate set of impostors for each cell, we al-
low arbitrary combinations between impostors and viewing regions.
Second, we show how additional rendering acceleration techniques
like visibility culling and geometric simplification can be used to-
gether with impostors to make best use of all approaches in a single
framework. Third, the use of a generic rendering time estimation
allows the algorithm to adapt to the actual rendering bottleneck.
In summary, our approach makes impostors accessible for a much
wider range of applications.

2 Overview

2.1 Formal Problem Definition

The input model is assumed to consist of a set O of discrete objects
o. The space of all possible viewpoints and view directions is called

view space V . An element v ∈ V is called a view and consists of a
3D viewpoint v3D and a 2D view direction v2D (encoded as azimuth
and elevation angles), so that V = V3D ×V2D. The field of view and
image resolution is assumed to be fixed for all views.

The problem view space Vp ⊆V is one of the fundamental concepts
of our approach. It encodes for which so-called problem views vp ∈
Vp the rendering time exceeds a desired maximum rendering time
tmax, i.e., where a “problem” occurs.

An impostor i can be created given three input parameters: a view
cell VC ⊆ V3D, an object cluster OC ⊆ O, and an image quality
criterion IQ. This means for any view within VC, rendering i in-
stead of OC will meet the image quality criterion IQ. The image
quality criterion IQ specifies that the impostor resolution meets at
least a certain output image resolution (to avoid “blocky” artifacts),
and that no visible “image cracks” caused by disocclusions occur.
Methods for ensuring this criterion exist for most impostor tech-
niques, like textured quads [Schaufler and Stürzlinger 1996; Shade
et al. 1996; Schaufler 1998; Jeschke et al. 2002], textured depth
meshes [Decoret et al. 1999; Jeschke and Wimmer 2002; Wilson
and Manocha 2003] and point clouds [Shade et al. 1998; Wimmer
et al. 2001].

Each impostor is associated with a set Vi ⊆ Vp of problem views
with 3D view positions inside VC. Note that the impostor is cre-
ated for a 3D view cell VC but used for a 5D view space (in short,
i serves Vi). This distinction is made because an impostor might
increase the rendering time for some views in VC, which happens
when most of the objects it represents are actually not visible for a
particular view direction. Figure 2 illustrates this definition of an
impostor.

i

Vp

VC vP

OC

Figure 2: An impostor i is generated for a 3D view cell VC and
used for a 5D problem view space subset of Vp .

An impostor placement for a view space V and an object set O is a
set I of impostors, each representing a set of objects OCi in the as-
sociated problem views Vi. The impostor placement problem can be
cast as an optimization problem for finding an impostor placement
I that

• satisfies the constraint that the rendering time tv for each view
v ∈V does not exceed the user-defined maximum frame time
tmax. Such a placement is called valid:

∀v ∈V : tv ≤ tmax (1)

The time tv is obtained assuming that the original objects are
replaced by the impostors. If constraint (1) is met for a prob-
lem view, we say it is solved.

• minimizes the memory required for all impostors. Such a
placement is called optimal:

∑
i∈I

mi → min (2)

In order to solve this problem, an impostor placement algorithm has
to decide on the object clusters for which impostors should be gen-
erated, and for every impostor on the size and position of the view

cells, as well as the problem views it should serve. Note that min-
imizing impostor memory typically also reduces the preprocessing
time needed to generate the impostors.

2.2 Observations

The problem in finding a good impostor placement mainly lies in
the huge number of valid impostor placements: even for a single
impostor, the view cell may have an arbitrary size and position in
the non-discrete view space. The goal is to limit the search space
while still providing good placements. Three essential observations
guide this process:

Observation 2.1. If multiple objects are adjacent in object space,
a common impostor for all objects is likely to require less memory
than separate impostors for each object.

This observation is especially true for distant objects that share
many pixels on screen. Consequently, with increasing distance,
larger clusters of objects should be represented by single impostors.
This observation is addressed, for example, by environment map
impostors [Aliaga et al. 1998; Wilson et al. 2001; Jeschke et al.
2002]. A beneficial side effect is that this also reduces the number
of rendering calls, and thus improves rendering acceleration on
current graphics cards.

Observation 2.2. If the appearance for a scene part hardly
changes when seen from a given viewing region, a single impos-
tor for the whole region is likely to require less impostor memory
than splitting the region into smaller view cells and generating an
impostor for each such cell.

Note that previous approaches (refer to Section 7) generate
impostors for a fixed set of view cells, and separately for each
cell. Because no distinction is made between nearby (apparently
changing) and distant (hardly changing) scene parts, many similar
impostors are generated for distant scene parts, which constitutes a
waste of memory.

Observation 2.3. If additional rendering acceleration techniques
like visibility culling and geometric levels of detail are applied be-
fore using impostors, this may dramatically decrease the required
amount of impostor memory.

This observation was only addressed by portal impostors in archi-
tectural models [Aliaga and Lastra 1997; Popescu et al. 1998] as
well as in urban models [Sillion et al. 1997].

The main contribution of the approach presented in this paper is
that it successfully addresses all three issues mentioned above, thus
providing a general method for placing impostors in various scenes
with moderate memory requirements, something which was not
possible until now.

2.3 Algorithm Outline

The impostor placement algorithm consists of four main steps:

Object set hierarchy generation: The object set is subdivided hi-
erarchically, clustering close objects first. This will address obser-
vation 2.1. Possible clustering techniques include bounding box
hierarchies, octrees and kd-trees. A finer subdivision may produce
a better impostor placement, but also increases preprocessing time.

Problem view space approximation: For approximating Vp, the
3D positional view space V3D as well as the 2D view direction

space V2D are subdivided hierarchically up to a user-defined ac-
curacy. The result is a set of conservative problem views (in short,
CPVs). These 5D subsets of V are conservative in the sense that
they include one or multiple problem views (Section 3).

Impostor candidate generation: A set of view cells is generated
for every node of the object hierarchy, defining a set of impostor
candidates for each node (Section 4).

Optimization: Finally, an optimization algorithm selects an im-
postor candidate subset so that constraint (1) is met and the opti-
mization criterion (2) is approximated (Section 5).

In the runtime system, the current CPV (if applicable) is looked up,
and all impostors associated with this CPV are rendered instead of
the original scene parts.

3 Problem View Space Approximation

In order to find which views cannot be rendered sufficiently fast, the
5D view space V is approximated using a hierarchical subdivision.
The approximation will be conservative in the sense that it will be
a superset of Vp. Subdivision is done first along the axes of the 3D
view space V3D. Then, for each resulting node, the view direction
space V2D is subdivided. The result of the 2D subdivision is used as
a termination criterion for the 3D subdivision. This means that a 3D
region is only subdivided further if its associated 2D subdivision in-
cludes a problem view, which allows fast removal of areas where no
problem views exist. Both subdivisions proceed to a user-defined
minimal size.

3.1 3D View Space

Possible subdivision techniques include octrees, BSP-trees or kD-
trees. The minimum region size for the subdivision must be chosen
with care: smaller regions lead to better problem view space ap-
proximations but the preprocessing time is also increased.

If the rendering system provides from-region visibility culling
and/or geometric simplification, these techniques can be performed
for each node during the 3D view space subdivision in order to ad-
dress observation 2.3. Only the visible objects at the correct level
of detail are then passed on to the 2D view direction subdivision.

3.2 2D View Direction Space

Given a node from the 3D view space hierarchy together with the
(visible and simplified) objects, the question is how to get the ren-
dering times for all possible views within that region. This can be
answered by extending the concept of enclosing frusta [Aliaga and
Lastra 1999]. Figure 3 (left) illustrates this concept for a single
view direction. The enclosing frustum for a 3D region contains all
objects visible from viewpoints in that region with the same view
direction. A rendering time estimation [Wimmer and Wonka 2003]
applied to the enclosing frustum is then a conservative estimation
for the rendering time of every enclosed view frustum. This concept
is extended to a range of view directions, which we call a view di-
rection interval (in short, VDI). The enclosing frustum of a VDI is
chosen so that it encloses all views with a view direction within its
range (Figure 3 (right)).

The view direction space subdivision starts from a 360◦ VDI. Fig-
ure 4 illustrates a 90◦ VDI subdivision together with the resulting
enclosing frusta for the 1D case.

enclosing
frustum

parallel

enclosed
view frustum

enclosed
view frustum

enclosed
view frustum

parallel

VDI

enclosing
frustum

Figure 3: Enclosing frustum for a single view direction (left) and
for a VDI (right), both for a 3D view region (light blue area).

90°
VDI

split

45°
VDI

45°
VDI

VDI

Figure 4: A 90◦ VDI (left) is subdivided in two 45◦ VDIs (middle).
Right: 2D VDI subdivision using a quadtree.

For the general 2D case, we start with an initial view direction sub-
division into six rectangular regions along every axis of the world
coordinate system, thus forming a cube. View directions are then
separately subdivided for each side of this cube (using a quadtree)
in order to obtain a reasonably uniform subdivision. This is shown
in Figure 4 (right) for one cube side.

In each subdivision step, the rendering time of every view within
a VDI is estimated by the rendering time estimation tenc for its en-
closing frustum. If tenc exceeds tmax, the VDI possibly contains a
problem view and is further subdivided. This is done recursively
until either tenc is lower or equal to tmax, or the user-defined mini-
mum VDI size is reached. In the latter case, the VDI is assumed to
contain at least one problem view. If the 3D region has also reached
its minimum size (see Section 3.1), the VDI together with the 3D
region is stored as a CPV, representing all problem views starting
in the associated 3D region with a view direction within the VDI.

Because the 3D and the 2D view space subdivision always termi-
nate at the same level for problem views, the result of the problem
view space approximation is a set of equally sized CPVs.

4 Impostor Candidate Generation

In order to “solve” the conservative problem views generated in the
previous step, impostor candidates have to be created so that the op-
timization algorithm can make a good placement. Every candidate
is specified by an object cluster OC ⊆ O and a view cell VC ⊆V3D,
so that it serves each CPV with a 3D region enclosed by VC. The
main problem to be solved is the huge number of possible candi-
dates. Therefore, observations 2.1 and 2.2 are used for a selective
candidate generation. First, the nodes of the object hierarchy are
used to define OCs for the candidates. This allows the optimization
process to address observation 2.1, because larger nodes can be se-
lected with increasing distance to the view cell. Second, for every
OC, a set of view cells has to be found so that observation 2.2 can
be met by the optimization. This means that with increasing dis-
tance between OC and VC, candidates with a larger view cell size

must be provided.

Many previous impostor approaches rely on rectangular view cells
in order to fulfill the image quality criterion [Aliaga et al. 1999;
Wilson et al. 2000; Darsa et al. 1997; Jeschke et al. 2002]. For
these techniques, the 3D view space hierarchy from the problem
view approximation (see Section 3.1) can be used directly, so that
every combination of a node of the object and the 3D view space
hierarchy defines a candidate.

Another view cell shape that is often used is a shaft implic-
itly [Jakulin 2000; Aubel et al. 1999; Schaufler and Stürzlinger
1996; Shade et al. 1996]. A shaft allows viewing an object from a
limited angular range (defined by an apex angle) and from a mini-
mum distance. Figure 5 shows an example for a shaft. For each
object hierarchy node, a set of shafts in different directions and
with different minimum view distances is generated. The advan-

Minimum distance

Apex angle

Shaft

Figure 5: A shaft with apex in the object center.

tage of shafts compared to rectangular view cells is that they per-
fectly address observation 2.2 because the view cell extent grows
with increasing distance to the object. In Section 6 we will show
that shafts provide better results compared to rectangular view cells.
Note also that view cells for view-independent impostors (e.g. bill-
board clouds [Décoret et al. 2003]) are shafts with a 360◦ apex an-
gle.

Candidates are not considered if they serve no CPV within their
view cell, or the combination of VC and OC allows no impostor
generation (e.g., if OC intersects VC). This greatly reduces the
overall number of candidates, so that only the most promising re-
main.

5 Optimization

The optimization algorithm calculates an impostor placement from
the set of candidates IC generated in Section 4 by applying the fol-
lowing steps:

• select a good subset I ⊆ IC to be generated and used as im-
postors,

• associate with every CPV the set of impostors that serve it
(used during runtime for selecting the impostors to display).

To find an optimal solution, all possible subsets of IC would have
to be tested, which is prohibitive even though IC is already of mod-
erate size compared to the original problem. Instead, we adopt a
greedy approach: at every choice the candidate with the best ra-
tio between the rendering acceleration it provides for the CPVs in
relation to its memory cost is selected.

5.1 Rendering Acceleration

Figure 6 shows for a single viewpoint how the exact rendering ac-
celeration function of an impostor i maps to the approximated ver-
sion we will present below. The exact rendering acceleration ∆ti

Vp

of an impostor i is defined as the integral of the rendering accelera-
tion ∆ti

vp
for every served view vp:

∆ti
Vp

=
∫

vp∈Vp

∆ti
vp

dv, (3)

for some measure dv.

View direction

R
e
n

d
e
ri

n
g

ti
m

e
(s

)

0 360°

Impostor iExact rendering
acceleration

ti

CPV

tmax

CPV

{

ti
vp

vp

Figure 6: The rendering time for a view point for every view direc-
tion and the respective CPVs.

The approximate rendering acceleration ∆ti
CPV of an impostor can-

didate i for a CPV is defined as

∆ti
CPV = max(0, to

CPV −max(ti
CPV , tmax)), (4)

where to
CPV is the original rendering time of CPV and ti

CPV is the
rendering time of CPV where impostor i is rendered instead of o.
The two maximum-terms in this definition reflect the fact that

• a candidate that takes longer to render than the original geom-
etry should never be selected for p, and

• any reduction of the rendering time to less than tmax is useless
(note how the rendering acceleration is clipped to tmax in Fig-
ure 6), so candidates with lower rendering acceleration, but
also lower memory costs, should be preferred in this case.

In practice, ti
CPV can be approximated by to

CPV − (to − ti), where ti
and to are the times needed to render the impostor and the original
object, both obtained by using a rendering time estimation function
[Wimmer and Wonka 2003]. Note that ∆ti

CPV varies over different
CPVs for the same impostor i due to different level-of-detail selec-
tions, size on screen, visibility culling etc. Furthermore, ∆ti

CPV is
defined to be 0 for any CPV with a 3D region that is not enclosed
by the view cell of i.

5.2 Candidate ranking

In order to select the “best” candidate in every greedy choice, each
candidate i is ranked according to its score si. This score corre-
sponds to the ratio of the overall rendering acceleration ∆ti obtained
in all CPVs, and its required memory mi:

si =
∆ti
mi

(5)

Since all CPVs have the same size, ∆ti is defined by the sum:

∆ti = ∑
CPV∈CPVs

∆ti
CPV (6)

This sum can be calculated efficiently by traversing the 3D problem
view space hierarchy and exploiting the fact that ∆ti

CPV can only be
non-zero if the view cell for i encloses the 3D region of CPV.

Since the impostor for the candidate to be ranked has not actually
been built yet, neither its exact memory requirements mi nor its
rendering time ti is known exactly. Both have to be estimated based
on the object cluster, the view cell, the CPV and the underlying
impostor technique. However, because this estimation is only used
for candidate ranking, the accuracy is not crucial.

5.3 Greedy Choices

After all impostor candidates i have been ranked with a score si, the
candidate with the highest score is chosen as an impostor. Such a
choice entails the following steps:

• The impostor is generated. This allows a more accurate esti-
mation of ∆ti

CPV based on the actual impostor geometry.

• For every CPV served (i.e., for which ∆ti
CPV is non-zero), add

i to the set of impostors to display. The impostor can now be
treated as belonging to the input scene, so that ∆ti

CPV can be
subtracted from the rendering time tCPV for those CPVs.

• Since a new value tCPV is now available for all CPVs served
by i, the scores si have to be recalculated for all impostor can-
didates that serve the affected CPVs. This operation is accel-
erated using a lazy recalculation scheme (Section 5.4).

The optimization algorithm proceeds by selecting the next candi-
date. This is repeated until no candidate is left.

5.4 Lazy Recalculation

Recalculating the scores si after every step of the greedy optimiza-
tion might be a very costly operation. Fortunately, since no score
si can increase for any remaining candidate (because ∆ti

CPV never
increases if an impostor is added to a CPV), a lazy recalculation
scheme can be applied: after every greedy choice, the candidates
with the highest score are recalculated and re-ranked according to
their new score. This is repeated until a candidate remains the best
choice even after being re-ranked, in which case it is accepted as
the next greedy choice. Candidates with a new score of 0 can be
deleted, because all CPVs they serve have already been solved.

Lazy recalculation greatly reduces the number of operations needed
for the optimization algorithm. Furthermore, for any candidate,
only its score, view cell geometry and a link to its object hierar-
chy node have to be stored, as all other required information can be
extracted on demand in reasonable time.

5.5 Overlapping Impostors

Some impostor candidates partially represent the same geometry
for some common CPVs. However, displaying multiple impostors
for the same geometry in any view is not desired, because image
quality problems (z-fighting) might occur. Fortunately, this prob-
lem can easily be avoided due to the object set hierarchy used for
candidate generation. The hierarchy implies that if two object clus-
ters OC1 and OC2 overlap, either OC1 and OC2 are identical, or one
encloses the other, i.e., OC1 ⊆ OC2 or OC2 ⊆ OC1. Note that this
consideration constitutes no special case for the algorithm, because
already created impostors are treated just as if they are the objects
they represent (see Section 5.3).

During the course of greedy optimization, an impostor may be re-
moved from all CPVs it is associated with. For that case, the im-
postor can be deleted and its memory regained.

6 Implementation and Results

6.1 Test Models

The automatic impostor placement algorithm was tested on the
freely available model of the city of Vienna (www.cg.tuwien.ac.
at/research/vr/urbanmodels/). We enhanced it with numer-
ous street objects, so that the final model consists of 5287 objects
with 10.4 million polygons in total. The rendering bottleneck for
this model in our test machine was identified to be the number of
rendering calls (a CPU bottleneck [Wimmer and Wonka 2003]), so
the impostor placement algorithm was tuned to reduce this number
for every output view. Because collapsing several textured objects
is still not efficiently possible using geometric levels of detail, im-
postors are actually the only way for accelerating the rendering pro-
cess for this type of scene without loss of image quality. Also note
that our experiments concentrate on mid-range scenes, where the
whole impostor database fits into graphics memory. This means that
no restrictions on user movement speed are necessary for texture
fetching tasks, which is important for instance in computer games.
However, the impostor placement algorithm is not restricted to such
cases.

We ran additional tests on the UNC Power Plant model (www.cs.
unc.edu/∼geom/Powerplant/), consisting of 12.7 million poly-
gons. Details about these tests are discussed in Section 6.4.

6.2 Test Setup

The test machine was a PC with an Intel Pentium 4 3.2 GHz and
1 GB memory. The graphics board was an NVIDIA GeForce
Quadro FX 3000 with 256 MB of memory. The API was the
OpenGL graphics API under the Windows XP operating system.

The object set hierarchy for the Vienna model is a bounding volume
hierarchy with 9 levels. For all tests, we selected a view space of
1500x1000 m, which covers the whole city. For the problem view
space approximation, the 5D view space subdivision was based on
a regular binary space partition for the 3D view space and a view
direction space subdivision as presented in Section 3.2. The 3D
part of the cubic CPVs had a side length of 23m, and the view
direction space was subdivided to intervals of 11.25◦. Visibility
culling was done for the model using a conservative from-region
visibility algorithm [Wonka et al. 2000].

For every node of the object hierarchy, a number of shaft-shaped
view cells form the impostor candidates. Shaft apex angles of
11.25◦, 22.5◦, 45◦ and 90◦ were used, and shaft directions in steps
of 11.25◦. The minimum allowed view distances for every shaft are
from 1 to 210 times the object size, doubled in each step. This setup
has been found to provide a good tradeoff between a sufficiently
high number of candidates and reasonable preprocessing time.

We have chosen layered impostors [Jeschke et al. 2002], which rep-
resent objects with alpha-textured polygon layers that are spaced so
as to eliminate disocclusion artifacts, as is required for our image
quality criterion IQ. The rendering time estimation for an impos-
tor is based on its number of screen pixels, since layered impos-
tors have been found to be fill-rate limited [Wimmer and Wonka
2003]. Impostors were generated for an output image resolution
of 512x512 pixels and 45◦ field of view, while the image quality
criterion was set to a maximum error of one pixel.

6.3 Test Results

In order to show how the parameters of the algorithm influence its
behavior, we first ran a “reference test” with the parameters de-
scribed in the previous section and a target frame time of 16ms.
Afterwards, we successively changed various parameters. Table 1
shows the resulting number of CPVs, impostor candidates and final
impostors, and most importantly, the resulting impostor memory.
The corresponding preprocessing times for the individual steps of
the algorithm are summarized in Figure 7.

Test Parameter CPVs Cands. # Imps. MB

1 Refer. test (16ms) 9078 314659 6650 14.1

2 tmax = 30ms 2270 154696 1504 1.01
3 tmax = 25ms 3562 204110 2502 2.3
4 tmax = 20ms 5846 260891 4357 5.7
5 tmax = 15ms 10172 327600 7425 18.4
6 tmax = 10ms 18880 393202 14270 103.1

7 256x256 Pixels 9078 426944 6107 3.6
8 1024x1024 Pixels 9078 214345 7548 70.2

9 V3D Approx: 46m 4509 310598 7749 30.6
10 V3D Approx: 11.5m 24685 301537 6306 11.6

11 Less Candidates 9078 33864 6152 28.6
12 More Candidates 9078 1544822 7022 13

13 Rectangular VC 9078 812248 16530 18.9

14 Per rectangular VC 9078 537776 137145 60.4

15 Environment maps - - 1545 233.1

16 No visibility (30ms) 43386 1467564 64017 170.9

Table 1: Statistics for the tests with the Vienna model.

0

20

40

60

80

100

120

1 2 3 4 5 6 7 8 9 10 11 12 13 14
Test number

P
re

p
ro

c
e
s
s

ti
m

e
(m

in
) Optimization+impostor generation

Impostor candidate generation

Problem view space approximation

Figure 7: Times needed for the main steps of the algorithm.

Influence of target frame time: For tests 2–6, the target frame
time was varied. As was expected, the more acceleration the im-
postors have to provide, the more memory and preprocessing time
is needed. The required memory grows more than linearly with de-
creasing target frame time, since more and more closer objects have
to be represented as impostors. This illustrates that impostors gen-
erated in preprocess are most suitable for small and/or for distant
objects.

Figure 8 shows the frame times for a sample walkthrough for these
tests. While the target rendering time was met in all tests, a general
over-conservativeness can be observed. The reason for this is that in
our implementation, if a candidate has been chosen as an impostor,
it is assigned to every problem view it accelerates, even if a problem
view has already been solved. This induces no additional memory,
but higher acceleration factors for many views.

0

5

10

15

20

25

30

35

40

45

50

55

60

1 401 801 1201 1601 2001 2401
Frame

F
ra

m
e

ti
m

e
(m

s
)

Without impostors

30ms (1 MB)

25ms (2 MB)

20ms (6 MB)

15ms (18 MB)

10ms (103 MB)

Env. maps (233 MB)

Figure 8: Rendering times for different target frame times.

Influence of output resolution/image quality criterion: Tests
7 and 8 analyze how the output resolution affects the necessary
amount of impostor memory in comparison to the reference test.
It can be seen that when doubling the output resolution, the mem-
ory increases by a factor of about 4 to 5. This can be explained by
the fact that the number of impostor texels grows roughly quadrat-
ically with increasing output resolution. Furthermore, in our case,
a higher resolution also results in a higher number of impostor lay-
ers. Note that changing the output resolution is actually equivalent
to changing the image quality criterion IQ for the layered impostor
technique.

Influence of problem view space approximation accuracy: Tests
9 and 10 analyze how the problem view space approximation (i.e.,
different CPV sizes in V3D) influences the result. Doubling the CPV
size also doubles the required impostor memory, setting it to half
the size shows diminishing returns, especially when taking into ac-
count the more than twofold increase in preprocessing time. This
shows that the approximation accuracy should be chosen with care.

Influence of the number of candidates: The number of candidates
is a tradeoff between a sufficiently large basis for a good optimiza-
tion and reasonable preprocessing times. In test 11, only one tenth
of the candidates compared to the reference test resulted in twice
the amount of impostor memory. Test 12 shows that a three times
increase of the candidate number barely improved the result, but in-
creased the time for the candidate generation and optimization step.

Rectangular view cells: For test 13, nodes of the problem view
space approximation were directly used for the impostor candidate
generation, as was also described in Section 4. This results in a
memory increase of roughly one third compared to the shaft-shaped
view cells of the reference test, which illustrates the advantage of
shaft-shaped view cells.

Per view cell placement: This test demonstrates the influence of
observation 2.2, i.e., the benefit of using large view cells for dis-
tant impostors. As for test 13, we used rectangular view cells that
were directly obtained from the view space hierarchy. But only
leaf nodes were allowed to serve as view cell for a candidate. We
tried several sizes for the view cells (i.e., different view space hier-
archy levels) with a best result of 60 MB for the impostors, which
is more than a three-fold increase compared to test 13 and a more
than 4-fold increase compared to test 1. Also note the much longer

0

100

200

1 401 801 1201 1601 2001 2401
Frame

F
ra

m
e

ti
m

e
(m

s
) Without impostors

30ms (171 MB)

Figure 9: Rendering times without occlusion culling.

preprocessing time for generating the impostors. The results show
that the observation 2.2 is an important basis for a good impostor
placement.

Environment map impostors: It is interesting to compare the re-
sults to a straight-forward approach (test 15), where impostors rep-
resent the whole scene from a certain distance (the so-called far
field) for every view cell. Therefore, we implemented the method
of Jeschke et al. [Jeschke et al. 2002] by dividing the view space
into a regular grid of view cells. For every cell, visibility culling
was applied, and the impostors were arranged as environment map
layers, representing the whole visible scene from a certain distance.
We tried several combinations of view cell sizes and far field dis-
tances and ended up with 25m view cell side length and 300m far
field distance as a good tradeoff. This resulted in slightly more than
4.5 hours for impostor generation and 233MB of impostor mem-
ory. Note that no frame rate guarantee is given by using impostors
in this way, but Figure 8 shows that a frame time of 20ms is not ex-
ceeded during the walkthrough. In order to guarantee such a frame
time, our new algorithm only needs 5.7MB of impostor memory,
which is more than 40 times lower. This shows impressively that
impostors should not be placed indiscriminately, but focussed on
the scene parts that provide the best rendering acceleration.

Impact of visibility: In test 16, we turned off occlusion culling
in order to see how impostor memory requirements increase for
providing a frame rate of 30ms. The preprocess needed about 11
hours (3 hours for the problem view space approximation, 36 min-
utes for the candidate generation and 7.4 hours for the optimization
and impostor generation). Figure 9 shows the rendering times for
the same walkthrough as above. The results show that visibility
culling is a significant factor for our test scene (compare to test 2),
and impostors should be used in conjunction with other acceleration
techniques in order to make best use of all available techniques.

6.4 Power Plant Results

In order to show how different view spaces influence the impos-
tor placement result, we applied the algorithm to the power plant
model. The object hierarchy was an 8-level deep octree of the
power plant model, where larger triangles were stored in interior
nodes and the remaining ones in the leaf nodes.

We targeted the placement algorithm to limit the number of prim-
itives in every output view to 100,000 polygons. A 40x40m view
space was calculated for two side-by-side positions in the model.
The resulting impostor memory differs by almost a factor of 4 in
this particular case, namely 146MB to 501MB. This clearly shows
how the required impostor memory may vary significantly for dif-
ferent view spaces, which makes it clear that comparisons between
different impostor placement algorithms are only possible when us-
ing exactly the same parameters and view spaces for all tests.

7 Comparison to Related Work

In the past, impostors have been used in several ways, including
environment-map-like structures [Darsa et al. 1997; Jeschke et al.
2002], along street segments in urban environments [Sillion et al.
1997], in portals [Aliaga and Lastra 1997; Popescu et al. 1998],
per-object (e.g., humans [Aubel et al. 1999], trees [Jakulin 2000],
clouds [Harris and Lastra 2001], etc. [Schaufler 1998]), or for
nodes of a model hierarchy [Maciel and Shirley 1995; Schaufler
and Stürzlinger 1996; Shade et al. 1996]. However, none of these
approaches provide a frame rate guarantee, and many don’t spec-
ify exactly for which objects to use impostors. So in many cases,
impostors might be placed where they are not necessary (a waste
of memory) while in turn they might be missed where needed for
rendering acceleration.

One of the first systems exploring rendering with guaranteed
frame rates is the predictive level-of-detail management system of
Funkhouser and Sequin [Funkhouser and Séquin 1993]. In this ap-
proach, image quality is traded for rendering speed. This is done
by greedily choosing different object representations based on a
cost/benefit metric. Maciel and Shirley [Maciel and Shirley 1995]
introduce impostors into this framework, which theoretically allows
both, guaranteed frame rates and a minimum image quality. How-
ever, they did not specify where exactly to use impostors and expe-
rienced high memory requirements.

Wilson et al. [Wilson et al. 2001] use the concept of near field and
far field for bounding the scene complexity. They narrow the far
field border until the near field complexity falls below a certain
threshold. Aliaga et al. [Aliaga et al. 1998] counterbalance the im-
age quality for the near field (displayed applying geometric simpli-
fication) and the far field (displayed using impostors) by adapting
the size of the near field. Aliaga and Lastra [Aliaga and Lastra
1999] represent distant scene parts with LDIs that are selected us-
ing a cost-benefit heuristic, leading to large memory consumption.

All approaches mentioned above share some limitations: first, al-
though many of them aim to maximize the impostor image quality,
no guarantee is given for eliminating image gaps caused by dis-
occlusions. As a consequence, visible popping artifacts may oc-
cur. Second, only a maximum scene complexity (on the order of
100,000 polygons per frame) is guaranteed, which is hardly related
to the output frame rate on current graphics hardware. Third, the
placement is done independently for every view cell ([Aliaga and
Lastra 1999] even allow only a single LDI per view). This leads
to very high memory requirements as was shown in Section 6, be-
cause the required impostor memory grows with every view cell.
Fourth, none of these approaches use impostors after applying visi-
bility culling. In Section 6 we have shown that especially this tech-
nique (if available) significantly decreases the amount of required
impostor memory. This is the reason why impostors have been suc-
cessfully used for instance for indoor scenes in portals [Aliaga and
Lastra 1997; Popescu et al. 1998]. If no visibility culling is avail-
able for a scene, Jeschke et al. [Jeschke et al. 2002] and Wilson
et al. [Wilson and Manocha 2003] presented impostor techniques
that include visibility calculations within the impostor generation
process. However, these visibility calculations require a separate
view cell for each impostor, which leads to the same high memory
requirements as mentioned above (see test 15 in Section 6).

8 Conclusions and Future Work

We have presented an automatic impostor placement algorithm that
can guarantee a specified maximum target frame time and a min-

imum image quality. It was shown that the memory required for
impostors can be kept to a tolerable level even for large view
spaces and scenes when using impostors carefully and not indis-
criminately. For mid-range scenes, as used for instance in computer
games, they often fit completely into graphics memory. The main
insight that has made this possible is that combinations between
both objects and view space regions have to be taken into consider-
ation, which has not been directly addressed in previous work.

The impostor placement optimization problem can be seen as a
multiple choice multiple knapsack problem with partly overlapping
items, each having a defined set of knapsacks it can be used for.
While greedy optimization is not guaranteed to find an optimal so-
lution, the impostor placements generated by the algorithm are very
stable with respect to their input parameters. The algorithm seems
to be well adapted to the problem because in normal cases, the items
are small compared to the knapsack capacities, which constitutes a
good condition for a greedy strategy. Trying an exact algorithm at
the end of the optimization phase only barely improved the results.

Furthermore, we have shown that taking visibility calculations into
account before using impostors greatly reduces the required impos-
tor memory and makes best use of all acceleration techniques at
the same time. The approach integrates seamlessly with current
real-time rendering systems and is not tied to a particular impostor
technique. It can be used with a number of existing techniques
if they fulfill the image quality requirements mentioned in Sec-
tion 2.1. Furthermore, the generic rendering time estimation allows
it to easily adapt to the actual rendering bottleneck. Note that the
result of the placement algorithm can also be used to generate the
impostors on demand at runtime.

A general restriction of any impostor-based approach is that a scene
together with the desired frame rate has to be suitable for impostor
techniques. For instance, small objects which require a large part of
the rendering time budget can easily overload nearby views. In this
case, even a very fine view space subdivision might not be sufficient
to let impostors provide a desired frame rate. To state it more gen-
erally, the combination of the scene, the specified rendering budget
and the view space should allow for most of the nearby objects to
be rendered using geometry.

In terms of future work, we plan to adaptively choose the degree of
problem view space subdivision in order to better adapt to different
scene configurations. This will reduce the number of problem views
and allow processing extremely large view spaces. It is conceivable
to automatically choose between different impostor techniques de-
pending on the scene part to be represented and the problem view
space to be served. Finally, we are looking into dynamic impos-
tor techniques to make impostors suitable for scenes with dynamic
lighting and various shading effects, which is especially important
for computer games.

9 Acknowledgements

This project was supported by the EU in the scope of the Game-
Tools project (IST-2-004363) and the Austrian Science Fund con-
tract no. P17261-N04.

References

ALIAGA, D. G., AND LASTRA, A. A. 1997. Architectural walkthroughs using portal
textures. In Proceedings IEEE Visualization ’97, 355–362.

ALIAGA, D., AND LASTRA, A. 1999. Automatic image placement to provide a
guaranteed frame rate. In SIGGRAPH 99 Conference Proceedings, 307–316.

ALIAGA, D., COHEN, J., WILSON, A., ZHANG, H., ERIKSON, C., HOFF, K.,
HUDSON, T., STUERZLINGER, W., BAKER, E., BASTOS, R., WHITTON, M.,
BROOKS, F., AND MANOCHA, D. 1998. A framework for the real-time walk-
through of massive models. Tech. Rep. TR98-013, Department of Computer Sci-
ence, University of North Carolina - Chapel Hill.

ALIAGA, D., COHEN, J., WILSON, A., BAKER, E., ZHANG, H., ERIKSON, C.,
HOFF, K., HUDSON, T., STÜRZLINGER, W., BASTOS, R., WHITTON, M.,
BROOKS, F., AND MANOCHA, D. 1999. MMR: An interactive massive model
rendering system using geometric and image-based acceleration. In 1999 Sympo-
sium on Interactive 3D Graphics, 199–206.

AUBEL, A., BOULIC, R., AND THALMANN, D. 1999. Lowering the cost of virtual
human rendering with structured animated impostors. In WSCG’99 Conference
Proceedings, Univ. of West Bohemia Press.

DARSA, L., SILVA, B. C., AND VARSHNEY, A. 1997. Navigating static environments
using image-space simplification and morphing. In 1997 Symposium on Interactive
3D Graphics, 25–34.

DECORET, X., SILLION, F., SCHAUFLER, G., AND DORSEY, J. 1999. Multi-layered
impostors for accelerated rendering. Computer Graphics Forum 18, 3, 61–73.

DÉCORET, X., DURAND, F., SILLION, F. X., AND DORSEY, J. 2003. Billboard
clouds for extreme model simplification. ACM Transactions on Graphics 22, 3,
689–696.

FUNKHOUSER, T. A., AND SÉQUIN, C. H. 1993. Adaptive display algorithm for
interactive frame rates during visualization of complex virtual environments. In
SIGGRAPH 93 Conference Proceedings, 247–254.

HARRIS, M. J., AND LASTRA, A. 2001. Real-Time cloud rendering. Computer
Graphics Forum 20, 3, 76–84.

JAKULIN, A. 2000. Interactive vegetation rendering with slicing and blending. In
Proc. Eurographics 2000 (Short Presentations).

JESCHKE, S., AND WIMMER, M. 2002. Textured depth meshes for real-time render-
ing of arbitrary scenes. In Rendering Techniques 2002, 181–190.

JESCHKE, S., WIMMER, M., AND SCHUMANN, H. 2002. Layered environment-map
impostors for arbitrary scenes. In Proceedings Graphics Interface 2002, 1–8.

MACIEL, P., AND SHIRLEY, P. 1995. Visual navigation of large environments using
textured clusters. In 1995 Symposium on Interactive 3D Graphics, 95–102.

POPESCU, V. S., LASTRA, A., ALIAGA, D. G., AND DE OLIVEIRA NETO, M. M.
1998. Efficient warping for architectural walkthroughs using layered depth images.
In Proceedings IEEE Visualization ’98, 211–216.

SCHAUFLER, G., AND STÜRZLINGER, W. 1996. A three-dimensional image cache
for virtual reality. Computer Graphics Forum 15, 3, 227–235.

SCHAUFLER, G. 1998. Per-object image warping with layered impostors. In Render-
ing Techniques ’98, 145–156.

SHADE, J., LISCHINSKI, D., SALESIN, D., DEROSE, T., AND SNYDER, J. 1996. Hi-
erarchical image caching for accelerated walkthroughs of complex environments.
In SIGGRAPH 96 Conference Proceedings, 75–82.

SHADE, J., GORTLER, S., HE, L., AND SZELISKI, R. 1998. Layered depth images.
In SIGGRAPH 98 Conference Proceedings, 231–242.

SILLION, F., DRETTAKIS, G., AND BODELET, B. 1997. Efficient impostor manipu-
lation for real-time visualization of urban scenery. Computer Graphics Forum 16,
3, 207–218.

WILSON, A., AND MANOCHA, D. 2003. Simplifying complex environments using
incremental textured depth meshes. ACM Transactions on Graphics 22, 3, 678–
688.

WILSON, A., LIN, M. C., YEO, B.-L., YEUNG, M. M., AND MANOCHA, D. 2000.
A video-based rendering acceleration algorithm for interactive walkthroughs. In
ACM Multimedia, 75–83.

WILSON, A., MAYER-PATEL, K., AND MANOCHA, D. 2001. Spatially-encoded far-
field representations for interactive walkthroughs. In ACM Multimedia, 348–357.

WIMMER, M., AND WONKA, P. 2003. Rendering time estimation for real-time ren-
dering. In Rendering Techniques 2003, 118–129.

WIMMER, M., WONKA, P., AND SILLION, F. 2001. Point-based impostors for real-
time visualization. In Rendering Techniques 2001, 163–176.

WONKA, P., WIMMER, M., AND SCHMALSTIEG, D. 2000. Visibility preprocessing
with occluder fusion for urban walkthroughs. In Rendering Techniques 2000, 71–
82.

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /All
 /Binding /Left
 /CalGrayProfile (Dot Gain 20%)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (U.S. Web Coated \050SWOP\051 v2)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Warning
 /CompatibilityLevel 1.4
 /CompressObjects /Tags
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJDFFile false
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends true
 /ColorConversionStrategy /LeaveColorUnchanged
 /DoThumbnails false
 /EmbedAllFonts true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /SyntheticBoldness 1.00
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 1048576
 /LockDistillerParams false
 /MaxSubsetPct 100
 /Optimize true
 /OPM 1
 /ParseDSCComments true
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveEPSInfo true
 /PreserveHalftoneInfo false
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts true
 /TransferFunctionInfo /Apply
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /DownsampleColorImages false
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 300
 /ColorImageDepth 8
 /ColorImageDownsampleThreshold 1.50000
 /EncodeColorImages true
 /ColorImageFilter /FlateEncode
 /AutoFilterColorImages false
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /ColorImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasGrayImages false
 /DownsampleGrayImages false
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 300
 /GrayImageDepth 8
 /GrayImageDownsampleThreshold 1.50000
 /EncodeGrayImages true
 /GrayImageFilter /FlateEncode
 /AutoFilterGrayImages false
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /GrayImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasMonoImages false
 /DownsampleMonoImages false
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 1200
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.50000
 /EncodeMonoImages true
 /MonoImageFilter /FlateEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile ()
 /PDFXOutputCondition ()
 /PDFXRegistryName (http://www.color.org)
 /PDFXTrapped /Unknown

 /Description <<
 /FRA <FEFF004f007000740069006f006e00730020007000650072006d0065007400740061006e007400200064006500200063007200e900650072002000640065007300200064006f00630075006d0065006e00740073002000500044004600200064006f007400e900730020006400270075006e00650020007200e90073006f006c007500740069006f006e002000e9006c0065007600e9006500200070006f0075007200200075006e00650020007100750061006c0069007400e90020006400270069006d007000720065007300730069006f006e00200061006d00e9006c0069006f007200e90065002e00200049006c002000650073007400200070006f0073007300690062006c0065002000640027006f00750076007200690072002000630065007300200064006f00630075006d0065006e007400730020005000440046002000640061006e00730020004100630072006f0062006100740020006500740020005200650061006400650072002c002000760065007200730069006f006e002000200035002e00300020006f007500200075006c007400e9007200690065007500720065002e>
 /JPN <FEFF3053306e8a2d5b9a306f30019ad889e350cf5ea6753b50cf3092542b308000200050004400460020658766f830924f5c62103059308b3068304d306b4f7f75283057307e30593002537052376642306e753b8cea3092670059279650306b4fdd306430533068304c3067304d307e305930023053306e8a2d5b9a30674f5c62103057305f00200050004400460020658766f8306f0020004100630072006f0062006100740020304a30883073002000520065006100640065007200200035002e003000204ee5964d30678868793a3067304d307e30593002>
 /DEU <FEFF00560065007200770065006e00640065006e0020005300690065002000640069006500730065002000450069006e007300740065006c006c0075006e00670065006e0020007a0075006d002000450072007300740065006c006c0065006e00200076006f006e0020005000440046002d0044006f006b0075006d0065006e00740065006e0020006d00690074002000650069006e006500720020006800f60068006500720065006e002000420069006c0064006100750066006c00f600730075006e0067002c00200075006d002000650069006e0065002000760065007200620065007300730065007200740065002000420069006c0064007100750061006c0069007400e400740020007a0075002000650072007a00690065006c0065006e002e00200044006900650020005000440046002d0044006f006b0075006d0065006e007400650020006b00f6006e006e0065006e0020006d006900740020004100630072006f0062006100740020006f0064006500720020006d00690074002000640065006d002000520065006100640065007200200035002e003000200075006e00640020006800f600680065007200200067006500f600660066006e00650074002000770065007200640065006e002e>
 /PTB <FEFF005500740069006c0069007a006500200065007300740061007300200063006f006e00660069006700750072006100e700f5006500730020007000610072006100200063007200690061007200200064006f00630075006d0065006e0074006f0073002000500044004600200063006f006d00200075006d00610020007200650073006f006c007500e700e3006f00200064006500200069006d006100670065006d0020007300750070006500720069006f0072002000700061007200610020006f006200740065007200200075006d00610020007100750061006c0069006400610064006500200064006500200069006d0070007200650073007300e3006f0020006d0065006c0068006f0072002e0020004f007300200064006f00630075006d0065006e0074006f0073002000500044004600200070006f00640065006d0020007300650072002000610062006500720074006f007300200063006f006d0020006f0020004100630072006f006200610074002c002000520065006100640065007200200035002e0030002000650020007300750070006500720069006f0072002e>
 /DAN <FEFF004200720075006700200064006900730073006500200069006e0064007300740069006c006c0069006e006700650072002000740069006c0020006100740020006f0070007200650074007400650020005000440046002d0064006f006b0075006d0065006e0074006500720020006d006500640020006800f8006a006500720065002000620069006c006c00650064006f0070006c00f80073006e0069006e006700200066006f00720020006100740020006600e50020006200650064007200650020007500640073006b00720069006600740073006b00760061006c0069007400650074002e0020005000440046002d0064006f006b0075006d0065006e0074006500720020006b0061006e002000e50062006e006500730020006d006500640020004100630072006f0062006100740020006f0067002000520065006100640065007200200035002e00300020006f00670020006e0079006500720065002e>
 /NLD <FEFF004700650062007200750069006b002000640065007a006500200069006e007300740065006c006c0069006e00670065006e0020006f006d0020005000440046002d0064006f00630075006d0065006e00740065006e0020007400650020006d0061006b0065006e0020006d00650074002000650065006e00200068006f0067006500720065002000610066006200650065006c00640069006e00670073007200650073006f006c007500740069006500200076006f006f0072002000650065006e0020006200650074006500720065002000610066006400720075006b006b00770061006c00690074006500690074002e0020004400650020005000440046002d0064006f00630075006d0065006e00740065006e0020006b0075006e006e0065006e00200077006f007200640065006e002000670065006f00700065006e00640020006d006500740020004100630072006f00620061007400200065006e002000520065006100640065007200200035002e003000200065006e00200068006f006700650072002e>
 /ESP <FEFF0055007300650020006500730074006100730020006f007000630069006f006e006500730020007000610072006100200063007200650061007200200064006f00630075006d0065006e0074006f0073002000500044004600200063006f006e0020006d00610079006f00720020007200650073006f006c00750063006900f3006e00200064006500200069006d006100670065006e00200070006100720061002000610075006d0065006e0074006100720020006c0061002000630061006c006900640061006400200061006c00200069006d007000720069006d00690072002e0020004c006f007300200064006f00630075006d0065006e0074006f00730020005000440046002000730065002000700075006500640065006e00200061006200720069007200200063006f006e0020004100630072006f00620061007400200079002000520065006100640065007200200035002e003000200079002000760065007200730069006f006e0065007300200070006f00730074006500720069006f007200650073002e>
 /SUO <FEFF004e00e4006900640065006e002000610073006500740075007300740065006e0020006100760075006c006c006100200076006f0069006400610061006e0020006c0075006f006400610020005000440046002d0061007300690061006b00690072006a006f006a0061002c0020006a006f006900640065006e002000740075006c006f0073007400750073006c00610061007400750020006f006e0020006b006f0072006b006500610020006a00610020006b007500760061006e0020007400610072006b006b007500750073002000730075007500720069002e0020005000440046002d0061007300690061006b00690072006a0061007400200076006f0069006400610061006e0020006100760061007400610020004100630072006f006200610074002d0020006a00610020004100630072006f006200610074002000520065006100640065007200200035002e00300020002d006f0068006a0065006c006d0061006c006c0061002000740061006900200075007500640065006d006d0061006c006c0061002000760065007200730069006f006c006c0061002e>
 /ITA <FEFF00550073006100720065002000710075006500730074006500200069006d0070006f007300740061007a0069006f006e00690020007000650072002000630072006500610072006500200064006f00630075006d0065006e00740069002000500044004600200063006f006e00200075006e00610020007200690073006f006c0075007a0069006f006e00650020006d0061006700670069006f00720065002000700065007200200075006e00610020007100750061006c0069007400e00020006400690020007300740061006d007000610020006d00690067006c0069006f00720065002e0020004900200064006f00630075006d0065006e00740069002000500044004600200070006f00730073006f006e006f0020006500730073006500720065002000610070006500720074006900200063006f006e0020004100630072006f00620061007400200065002000520065006100640065007200200035002e003000200065002000760065007200730069006f006e006900200073007500630063006500730073006900760065002e>
 /NOR <FEFF004200720075006b00200064006900730073006500200069006e006e007300740069006c006c0069006e00670065006e0065002000740069006c002000e50020006f00700070007200650074007400650020005000440046002d0064006f006b0075006d0065006e0074006500720020006d006500640020006800f80079006500720065002000620069006c00640065006f00700070006c00f80073006e0069006e006700200066006f00720020006200650064007200650020007500740073006b00720069006600740073006b00760061006c0069007400650074002e0020005000440046002d0064006f006b0075006d0065006e00740065006e00650020006b0061006e002000e50070006e006500730020006d006500640020004100630072006f0062006100740020006f0067002000520065006100640065007200200035002e00300020006f0067002000730065006e006500720065002e>
 /SVE <FEFF0041006e007600e4006e00640020006400650020006800e4007200200069006e0073007400e4006c006c006e0069006e006700610072006e00610020006e00e40072002000640075002000760069006c006c00200073006b0061007000610020005000440046002d0064006f006b0075006d0065006e00740020006d006500640020006800f6006700720065002000620069006c0064007500700070006c00f60073006e0069006e00670020006f006300680020006400e40072006d006500640020006600e50020006200e400740074007200650020007500740073006b00720069006600740073006b00760061006c0069007400650074002e0020005000440046002d0064006f006b0075006d0065006e00740065006e0020006b0061006e002000f600700070006e006100730020006d006500640020004100630072006f0062006100740020006f00630068002000520065006100640065007200200035002e003000200065006c006c00650072002000730065006e006100720065002e>
 /ENU <FEFF005500730065002000740068006500730065002000730065007400740069006e0067007300200074006f0020006300720065006100740065002000500044004600200064006f00630075006d0065006e0074007300200077006900740068002000680069006700680065007200200069006d0061006700650020007200650073006f006c007500740069006f006e00200066006f007200200069006d00700072006f0076006500640020007000720069006e00740069006e00670020007100750061006c006900740079002e0020005400680065002000500044004600200064006f00630075006d0065006e00740073002000630061006e0020006200650020006f00700065006e00650064002000770069007400680020004100630072006f00620061007400200061006e0064002000520065006100640065007200200035002e003000200061006e00640020006c0061007400650072002e>
 >>
>> setdistillerparams
<<
 /HWResolution [2400 2400]
 /PageSize [595.000 842.000]
>> setpagedevice

