
Volume 0 (1981), Number 0 pp. 1–4

Unpopping: Solving the Image-Space Blend Problem for
Smooth Discrete LOD Transitions

Markus Giegl and Michael Wimmer

Institute of Computer Graphics and Algorithms
Vienna University of Technology

Abstract
This paper presents a new, simple and practical algorithm to avoid artifacts when switching between discrete
levels of detail (LOD) by smoothly blending LOD representations in image space. We analyze the alternatives
of conventional alpha-blending and so-called late-switching (the switching of LODs “far enough” from the eye-
point), widely thought to solve the LOD switching discontinuity problem, and conclude that they either do not work
in practice, or defeat the concept of LODs. In contrast we show that our algorithm produces visually pleasing
blends for static and animated discrete LODs, for discrete LODs with different types of LOD representations (e.g.
billboards and meshes) and even to some extent totally different objects with similar spatial extent, with a very
small runtime overhead.

Categories and Subject Descriptors (according to ACM CCS): I.3.7 [Computer Graphics]: Three-Dimensional
Graphics and Realism

1. Introduction

Discrete level-of-detail rendering is a well known accelera-
tion technique where complex objects are replaced by suc-
cessively simpler (in geometry and/or shading) representa-
tions the farther they are from the eye point. During run-
time, the renderer chooses from a series of so-called levels
of detail (LODs) for each object. This LOD selection is often
based either on the distance of the object from the observer,
or on an estimate of the number of projected pixels of the
object [FS93]. A detailed and comprehensive discussion of
most level-of-detail techniques can be found in [LRC∗02].

While discrete LOD creation and selection have been
widely researched, LOD switching, i.e., the question how to
stage the transition between two different discrete levels of
detail of an object, is a significant open problem in using dis-
crete LODs, as evidenced by popping artifacts due to “hard”
LOD switching in state-of-the-art computer games such as
FarCry or Half Life 2 (You can find screenshots of pop-
ping examples in games at http://www.cg.tuwien.
ac.at/research/vr/unpopping/pop; the images
on the page take a few seconds to load. Move your mouse
over/out of the images to observe the popping).

Since LOD switching seems to be a simple task, we have

found that most computer graphic researchers assume that
the straightforward approach of doing a conventional (α,1-
α)-blend between different levels of discrete LODs solves
the problem. However, this approach does not work, as
can be seen by considering the intermediate states of such
a blend, where both LOD representations—and therefore
the whole object—are rendered semitransparently, blend-
ing with previously rendered objects and/or the background-
color. The blend could be done using offscreen buffers, but
this would have a high performance and memory usage
penalty. Another commonly held opinion is that the problem
can be solved by simply hard-switching at a large enough
distance; while this may be true in a mathematical sense for
purely geometric LODs that do not depend on the environ-
ment (e.g., via shaders), we argue that in practice this does
not work due to the nature of the human perception system
and that it defeats the purpose of LODs.

In this paper, we present a novel solution to discrete LOD
switching that is at the same time visually pleasing, simple
to implement and has a very small runtime overhead. The
method is based upon a new image-space blend formula-
tion of two representations of an object. Only standard, fixed
pipeline graphics hardware features are used. Therefore the

c© The Eurographics Association and Blackwell Publishing 2006. Published by Blackwell
Publishing, 9600 Garsington Road, Oxford OX4 2DQ, UK and 350 Main Street, Malden,
MA 02148, USA.

http://www.cg.tuwien.ac.at/research/vr/unpopping/pop
http://www.cg.tuwien.ac.at/research/vr/unpopping/pop

Markus Giegl and Michael Wimmer / Unpopping

method is fast, leads to no conflict with modern hardware ac-
celeration features such as hierarchical depth buffers, and is
also suitable for less potent devices such as handhelds. Note
that a short description of the idea based on an early draft of
this paper already appeared in [MH02].

Another important contribution of this paper not yet found
in literature is an in-depth discussion of the problems with
commonly used LOD switching techniques, providing an-
swers to common misunderstandings in the usage of LODs.

2. LOD Switching

Several solutions have been proposed for the problem of
LOD switching, i.e., the question how to stage the transition
between two different discrete levels of detail of an object:

2.1. Hard Switching

The simplest approach is hard switching, i.e., one LOD is
replaced by another at some point in time. Although simple
and fast, due to the nature of human perception this method
leads to very noticeable and visually disturbing temporal dis-
continuity artifacts (“popping”).

2.2. Late Switching

One seemingly obvious solution is so-called late switching,
i.e., to hard-switch at a “large enough” distance, where the
difference between the two LODs is “no longer noticeable”.

There are several problems with this approach, which
make it unfit for practical use:

It tries to fulfill two conflicting goals: on the one hand,
increasing the frame rate to keep the application real time by
switching as early as possible, and on the other hand, trying
to reduce popping artifacts by switching as late as possible.

To switch as early as possible is necessary because the
number of objects (and therefore the render cost) in a typi-
cal 2.5D scene (with a homogeneous object distribution) for
which a more complex LOD has to be rendered increases
quadratically with the switching distance. This is because
the number of objects with distance smaller than r to the
viewpoint is ∝ r2.

In addition, fill rate for costly shaders used for nearer
LODs of an object is only saved when the object still covers
a significant amount of screen space when the switch occurs.

As if this were not enough by itself, the second, contra-
dicting goal to reduce popping by switching as late as pos-
sible, can in general not even be attained in itself, since the
human visual system is fine-tuned to notice even small dis-
continuous changes. This is problematic because two LODs,
even when rendered far from the viewpoint, cannot be guar-
anteed to produce identical images. The goal becomes com-
pletely unattainable when different shading effects (e.g., en-
vironment maps vs. simpler shading, or rendering specular

highlights vs. diffuse shading only) are used for the different
LODs, which is frequently the case in today’s games.

We conclude that late switching is not a practical ap-
proach. On the contrary, one wants to switch to lower LODs
as early as possible in order to make good use of LODs.

2.3. LOD Blending in Image Space

LOD blending in image space is often mentioned as a
generic way to do the transition between LODs. However,
just linearly blending the two LODs is not possible, since
an incorrect, semitransparent object would result during the
blend, when both LODs get rendered semitransparently into
the scene (see Figure 1 and the 2nd paragraph in Section 3).

A variation of this method would be to render the two
LODs opaquely into separate offscreen buffers and do an
(α,1-α)-blend between them: The render cost to do so is
high, because it requires two offscreen buffers (+ depth
buffers), the size of the frame buffer, combined with costly
rendertarget switches to the offscreen buffers and back to
the frame buffer to render the result of the LOD blend into
the scene. This also requires depth buffer writes in the pixel
shader, prohibiting modern hardware depth buffer speedup
techniques, such as hierarchical depth buffers. In addition,
the fringe area (where the two blended objects do not cover
the same screen space area) leads to problems, because there
a blend with the background color of the offscreen buffer
would occur.

Multisampling hardware (as was supported by the SGI
Infinite Reality [EJ00]), produces worse results than our ap-
proach, since the number of stages in the transition is limited
to the number of samples in the multisample mask.

2.4. Geomorphing

Some mesh representations allow a technique called geo-
morphing [Hop96, Hop98], where vertex positions are in-
terpolated between the two LODs. This requires that each
vertex of one LOD can be uniquely identified with a ver-
tex of the second LOD, which is only possible for special
multiresolution mesh representation techniques. While geo-
morphing is widely referred to as the highest-quality LOD-
switching technique, it can make solid structures (like ter-
rains) appear to be moving in a quasi-organic way, and this
effect can be as disturbing as hard switching itself (although
recent approaches have brought significant improvements
in this area, for example for terrain visualization applica-
tions [CGG∗03]). While a lot of very interesting research
has been done in this field, due to the comparatively large
implementation effort required (and also partly due to the
need for restripification), very few computer games use ge-
omorphing. Note that even if the geometry transition can be
made fairly smooth, appearance switches (e.g., less complex
shaders, which might be even more important than geomet-
ric simplification in today’s games) are still hard switches

c© The Eurographics Association and Blackwell Publishing 2006.

Markus Giegl and Michael Wimmer / Unpopping

Figure 1: A spherical object in transition between two LODs
that project to a 6- and 12-sided polygon in screen space re-
spectively. In the background are a spaceship, a planet sur-
face and a text object. Left: Conventional blending leads to
semitransparency during the blend, making objects behind
the LOD object visible—the player could wrongly see the
spaceship. Right: In our new method, one of the LODs is
drawn opaquely, solving the transparency problem.

Unpopping (α,1-α)
t ∈ [0,0.5[t ∈ [0.5,1] t ∈ [0,1]

α 1 2(1− t) t
LOD1 z-test true true true

z-writes true false false

α 2t 1 1− t
LOD2 z-test true true true

z-writes false true false

Figure 2: The table shows render state settings during the
LOD blend. The last column shows the render state settings
of the conventional (α,1-α)-blend in comparison.

and will therefore pop. Also, progressive representations do
not allow completely different LOD representations (e.g.,
disjointed vs. skinned LODs). Discrete LODs do not suf-
fer from these limitations, and can stage such transitions
smoothly using the method presented in this paper.

3. A new method for LOD blending

The aim of LOD blending is to stage a smooth transition be-
tween two level-of-detail representations, called LOD1 and
LOD2. The transition should take place for a parameter t,
depending for instance on time or distance, running from 0
to 1. The problem then is how to render the object as a blend
between LOD1 and LOD2 at any parameter value t between
0 and 1.

The traditional interpretation of alpha-blending suggests a
blend of 1− t times LOD1 (usually implemented by setting
the transparency value of the object to 1− t), and t times
LOD2. However, this interpretation is unsuited for LOD
blending in practice because during the blend both LOD rep-
resentations would be rendered semitransparently over pre-
viously rendered objects and the background (see Figure 1).
If the LOD-blend parameter t is based on distance to the eye-

point, the user will see a permanently transparent object as
long as his distance to the object stays the same. But even
if the blend is done over time, there is no sweet spot for the
blend time: Either the blend is short enough, then we per-
ceive popping, or it is longer, then the object is perceived to
be semitransparent (which is more disturbing than the pop).

What we would need is an object that at least approxi-
mately fills the depth buffer correctly before the blend, so
that the scene behind does not shine through. The main idea
of our new algorithm is to use the LODs themselves for this
purpose, which together with the right choice of depth buffer
writes and depth comparison gives a continuous LOD tran-
sition in image space:

First, from t = 0 to 0.5, render the current LOD, LOD1,
opaquely and with depth writes, and “fade in” the new LOD,
LOD2, by rendering it alpha blended without depth writes
but depth compares on top of it. Then, when LOD2 is faded
in completely (i.e., both LODs are rendered opaquely atop of
each other and are therefore interchangeable), switch roles,
rendering LOD2 opaquely, and “fading out” LOD1 from t =
0.5 to 1. Thus, at any one time during the transition, one
of the two objects is rendered opaquely, and will therefore
create a valid depth buffer.

Figure 2 shows the different render state settings during
the blend.

The new algorithm can also be interpreted the following
way: the first stage blends from LOD1 towards the CSG-
union of the two LODs, whereas the second stage blends
from the union towards LOD2.

4. Discussion

In the algorithm presented, the opaque LOD provides the
depth buffer content also for the transparent LOD. This leads
to the following minor artifacts:

First, in areas where the silhouettes of the two LODs do
not match exactly, the semitransparent LOD will blend with
the rest of the scene. Also, the part of the semitransparent
LOD protruding from the opaque LOD will be hidden by
a more distant opaque object if it is drawn afterwards. We
have found that these effects are negligible for all practi-
cal purposes, since the areas were these effects occur are
very small and appear and disappear smoothly. If one still
wanted to get rid of the latter effect and minimize the for-
mer, one simply would have to draw the opaque LODs first,
and the semitransparent LODs back-to-front afterwards (just
like conventional semitransparent objects in the scene).

Second, if a LOD-blended object intersects other geom-
etry, there will be a discontinuity in depth space at t = 0.5,
when the switch between the LOD being rendered into the
depth buffer occurs. In this case a discontinuity at the in-
tersection between the object and the scene will occur, be-
cause the transition is not smooth in depth space. This is not

c© The Eurographics Association and Blackwell Publishing 2006.

Markus Giegl and Michael Wimmer / Unpopping

a problem in practice, because in correctly modeled scenes
intersections between objects and the scene do not occur. In
any case, the artifacts that occur are much less pronounced
than the popping coming from a hard switch, because the
screen space area that changes abruptly is only a small part
compared to the area affected by a hard LOD switch.

One other possible problem is “z-fighting”, which can oc-
cur if two LODs contain very similar polygons in depth
space, which at the same time differ significantly in image
space (e.g. due to shading, for example if the normal vectors
of the two LODs differ by a large amount). If the LODs are
modeled by hand, this problem can easily be avoided by the
artist. If they are created automatically and the problem ap-
pears, one can extend the algorithm to add a small polygon
offset to one of the two LODs.

5. Results

We found that a very short transition phase (below one sec-
ond) is sufficient to eliminate popping and provide a smooth
transition. This also gives the best performance since only a
small number of objects incur the overhead of being drawn
with two LODs at any one time.

The method also works well for animated models with
LODs—another area where progressive mesh techniques
have a hard time providing good visual quality for low-detail
meshes. Geomorphed meshes have a tendency of showing
effects like foldovers and too-slim body parts when ani-
mated. With discrete LODs, on the other hand, disjointed
models (even using line rendering) can be used for the lower-
detail LOD representations. The algorithm we presented can
also be combined with progressive mesh techniques, for in-
stance doing very high resolution progressive mesh render-
ing of a model in the foreground, and blending to a discrete,
disjointed model LOD representation farther away.

The two objects being blended are not necessarily re-
stricted to represent levels of details. It is possible to blend
two totally different objects, obtaining the effect of a visually
smooth transition between them.

At http://www.cg.tuwien.ac.at/research/
vr/unpopping/examples you can find videos and
screenshots comparing hard switching (artifact: popping),
the “standard” (α,1-α)-blend (artifact: see-through of back-
ground; popping, when blend time becomes � 1s), and our
algorithm. Please note that the artifacts are more pronounced
during the actual rendering than in the videos, due to the un-
avoidable blurring/softening done by the video codec. You
can also find videos that show the use of the technique in the
commercial computer game “FBI Academy”, and screen-
shots depicting LOD popping in current computer games.

6. Conclusions

LOD switching is an underestimated problem: Even the
most current computer games still show visible popping ar-

tifacts, since the obvious approaches to reduce the popping
do not work.

This paper shows a new interpretation of blending which
works on current graphics hardware, with all LOD schemes,
and integrates well with the rendering pipeline by providing
a valid depth buffer. It can be added to all real-time applica-
tions with minimal implementation effort.

Acknowledgements

This research was partly supported by the EU (project no.
IST-2-004363) in the European Union GameTools Project
(http://www.gametools.org).

References

[CGG∗03] CIGNONI P., GANOVELLI F., GOBBETTI E.,
MARTON F., PONCHIO F., SCOPIGNO R.: BDAM –
batched dynamic adaptive meshes for high performance
terrain visualization. Computer Graphics Forum 22, 3
(2003), 505–514. 2

[EJ00] ECKEL G., JONES K.: OpenGL Performer Pro-
grammer’s Guide. SGI techpubs library, 2000. Document
Number 007-1680-060. 2

[FS93] FUNKHOUSER T. A., SÉQUIN C. H.: Adaptive
display algorithm for interactive frame rates during visu-
alization of complex virtual environments. In ACM SIG-
GRAPH 93 Conference Proceedings (1993), pp. 247–254.
1

[Hop96] HOPPE H.: Progressive meshes. In ACM SIG-
GRAPH 96 Conference Proceedings (1996), pp. 99–108.
2

[Hop98] HOPPE H.: Smooth view-dependent level-of-
detail control and its application to terrain rendering.
In Proceedings of the conference on Visualization ’98
(1998), pp. 35–42. 2

[LRC∗02] LUEBKE D., REDDY M., COHEN J. D.,
VARSHNEY A., WATSON B., HUEBNER R.: Level of De-
tail for 3D Graphics. Elsevier Science Inc., 2002. see also
www.lodbook.com. 1

[MH02] MÖLLER T., HAINES E.: Real-Time Rendering,
Second Edition. A. K. Peters Limited, 2002. 2

c© The Eurographics Association and Blackwell Publishing 2006.

http://www.cg.tuwien.ac.at/research/vr/unpopping/examples
http://www.cg.tuwien.ac.at/research/vr/unpopping/examples
http://www.gametools.org

