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Abstract

We present a new method for the automatic partitioning of view space into a multi-level view cell hierarchy. We
use a cost-based model in order to minimize the average rendering time. Unlike previous methods, our model
takes into account the actual visibility in the scene, and the partition is not restricted to planes given by the
scene geometry. We show that the resulting view cell hierarchy works for different types of scenes and gives lower
average rendering time than previously used methods.

Categories and Subject Descriptors (according to ACM CCS): I.3.7 [Computer Graphics]: Three-Dimensional
Graphics and Realism I.3.5 [Computer Graphics]: Computational Geometry and Object Modeling

1. Introduction

Visibility preprocessing is an important tool in many ap-
plication areas, for example for achieving interactive walk-
throughs of large scale virtual environments. Traditional vis-
ibility preprocessing algorithms assume a view space that is
partitioned into a set of view cells. In a preprocessing step,
they determine for each view cell a potentially visible set
of objects (PVS). At runtime, only the PVS stored with the
view cell containing the viewpoint needs to be rendered,
leading to potentially huge savings in rendering time.

While there is a huge body of literature on how to cal-
culate a PVS for a given view cell, the problem of how to
actually find the view cells has received only marginal at-
tention so far. This is surprising, since the selection of view
cells is crucial for several reasons: (1) view cells that take the
visibility structure of the scene into account allow achieving
smaller PVSs, and therefore faster rendering speed at run-
time, (2) a bad view cell definition can severely impact the
time required for the preprocessing step, and (3) the amount
of memory required to store the PVS data depends strongly
on the quality of the view cell distribution.

Consider, for example, a model of a city with buildings of
different heights. A naive subdivision method that concen-
trates on the 2D layout of the city might end up with most
view cells seeing the whole city, because the upper parts of
all view cells extend over the roof tops. Clearly we would

Figure 1: A 2D cut through a set of view cells constructed
with our method for the Soda hall building. Note how the
shape of view cells adapts to loci of visibility events.

like to separate these regions from those which see only the
nearby streets. This shows that even for relatively simple
types of scenes, important visibility changes can occur due
to the height structure of the model.

The only published methods dealing with this problem
are either based on very simple regular top-down subdivi-
sion schemes [SVNB99, vdPS99, NB04], or treat only spe-
cial types of scenes [ARB90,TS91,HDS03,LCOC03], while
in most practical applications (e.g., computer games), the
difficulty of view-cell construction is one of the factors that
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hinders the wide-spread use of visibility preprocessing meth-
ods for general scenes. The finest possible subdivision is
given by the aspect graph, which partitions the view space
into cells from which the qualitative aspect of the scene does
not change [PD90]. However, the full aspect graph requires
as much as O(n9) nodes for perspective views (n is number
of polygonal edges) and is therefore prohibitively expensive
to compute and to store.

In this paper we provide an adaptive view cell construc-
tion technique for general scenes which takes the actual vis-
ibility structure of the scene into account. The technique re-
lies on four novel contributions: (1) the visibility of the scene
can be approximated by an inexpensive stochastic sampling
step, (2) the view cell construction is driven by the average
rendering time of the resulting partition, which is ultimately
the most important factor in visibility processing, (3) an opti-
mized set of view cells is found by combining top-down sub-
division and bottom-up merging steps, and (4) our method
allows easy control over the subdivision by using intuitive
global termination criteria such as a threshold on rendering
time reduction or a maximal memory budget. Another nov-
elty is that we do not construct a fixed set of view cells, but
provide a hierarchy of view cells, which makes it easy to
extract an optimized set of view cells for a given set of con-
straints. As a result, our view cell subdivision provides fast
rendering times with a minimal set of view cells, thus saving
both preprocessing time and PVS storage space.

2. Related Work

The first visibility preprocessing methods were designed for
accelerating walkthroughs of indoor architectural environ-
ments [ARB90, TS91]. These methods partition the scene
into cells roughly corresponding to rooms in the building.
The cells are connected by portals which correspond to
transparent boundaries between the cells.

Airey et al. [ARB90] defined a set of rules which the view
space subdivision algorithm should satisfy. They construct a
kD-tree hierarchy where the subdivision planes are aligned
with scene polygons. For each candidate plane they compute
its priority as a weighted sum of its occlusion properties and
the estimated balance and size of the tree. A similar tech-
nique was used by Teller and Séquin [TS91], and was later
extended to an auto-partition BSP tree [Tel92].

As noticed by Teller [Tel92] in general 3D scenes with
non-axial polygons, the subdivision may result in cell frag-
mentation. This problem was addressed by Meneveaux et
al. [MBMD98] who focused on building interiors. In the first
step they extract the floors of the building and in the second
step they use a 2D method to partition each floor separately.
The 2D method clusters candidate splitting planes in dual
space to find those planes which provide the best fit to the
walls of the building.

Despite the research on constructing cell and portal graphs

the manual construction of cells and portals during the mod-
eling phase is still considered a valuable option especially
for indoor maze-like scenes [LG95, Ail00].

Recently, Lerner et al. designed an algorithm which aims
to create short portals [LCOC03]. The algorithm is suitable
for 2D scenes and 2.5D scenes with buildings of comparable
height. The authors also present a cost model for evaluat-
ing the efficiency of the resulting partition. Using this cost
model, it is shown that the method delivers superior parti-
tions compared to previous BSP tree based algorithms.

Haumont et al. [HDS03] used a significantly different
strategy for constructing a cell/portal graph. They use a vox-
elization of the scene and the watershed algorithm com-
puted on a distance field. The method grows cells from
local minima of the distance field and introduces portals
when two cells meet. Similarly to the method of Lerner et
al. [LCOC03], this approach uses a top-down subdivision
(voxelization) as well as a localized bottom-up cell construc-
tion (watershed).

All the methods mentioned above deal with the construc-
tion of cell and portal graphs. However the PVS concept has
been used by numerous methods which do not need portals
for PVS computation [COCSD02]. Most of these methods
focus only on the PVS determination step, i.e., computing
from-region visibility. They assume that the view cells are
either defined by the user or use a simple view space subdi-
vision without further considerations.

However, there are several methods which indirectly deal
with the problem of finding good set of view cells. Addition-
ally, unlike the above mentioned cell and portal methods,
they make use of the actual visibility information [GSF99,
SVNB99,vdPS99,NB04]. Gotsman et al. [GSF99] construct
a 5D subdivision of view space in which they use sam-
pled visibility to evaluate the efficiency of the candidate
splitting planes. The visibility octree of Saona-Vázquez et
al. [SVNB99] is constructed by a view space subdivision
which terminates when reaching a predefined triangle budget
or when visibility cannot be reduced by the associated con-
servative algorithm. Van de Panne and Stewart [vdPS99] de-
signed a compression scheme for PVSs computed for a set of
view cells. As a side-product of the compression, some cells
get merged. Similarly to Saona-Vázquez et al. [SVNB99],
Nirenstein and Blake [NB04] use a hierarchical view space
subdivision which is terminated if the desired triangle bud-
get is reached. The triangle budget is determined from the
PVS computed for the view cell using aggressive visibility
sampling. The view cell determination in all these methods
is driven by rather simple models which consider only PVS
set differences. Additionally the methods of Gotsman et al.,
Saona-Vázquez et al. and Nirenstein and Blake perform only
top-down view space subdivision, which need not adapt well
to local visibility changes. On the other hand the method
of van de Panne and Stewart performs only bottom-up con-
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struction, which does not permit using a larger number of
initial view cells.

Our paper aims to give a deeper analysis of finding a good
set of view cells based on actual visibility. We provide a new
cost model for evaluating the efficiency of the constructed
view cells. The model is based on the estimated rendering
cost for a given view space partition. Our method does not
provide only a fixed set of view cells. Instead it constructs a
novel form of view cell hierarchy from which we can extract
an optimized set of view cells for a given memory budget.

3. Overview

3.1. What is a good view cell partition?

It is instructive to think about what criteria determine a
“good” view cell partition. Since the ultimate goal of visi-
bility preprocessing is to accelerate rendering, the runtime
rendering costs will play an important role. The intuitive an-
swer is that the partition should minimize the rendering costs
at runtime for each possible viewpoint. A view cell subdi-
vision corresponding to this criterion actually exists and is
given by the aspect graph. This structure is fully determined
by the visibility structure of the scene, namely by the so-
called visual events (boundaries at which changes in visibil-
ity occur). However, this subdivision would be prohibitively
expensive to compute and to store.

This leads to PVS storage space and precomputation time
as further important criteria. Both of these are determined
by the total number of view cells in the subdivision, the ac-
tual visibility, the visibility algorithm, and the PVS storage
method used: output-sensitive visibility algorithms can make
computation time sublinear in the number of view cells, and
PVS compression schemes can significantly reduce the re-
quired storage space.

An alternative to minimizing runtime rendering costs is to
specify a rendering budget, i.e., a maximum rendering cost
for a view cell. However, a model can contain an arbitrary
number of viewpoints for which this rendering budget can-
not be met. This can easily lead to excessive subdivision in
areas with unrestricted visibility, and therefore again to high
storage costs and precomputation time. Furthermore, such a
view cell partition will be strongly tied to a particular run-
time system, which is undesirable for a preprocessing algo-
rithm.

We therefore propose the average rendering cost of the
whole view space as the criterion to drive the view cell con-
struction, because it can be well combined with a constraint
on the number of view cells in order to limit PVS storage
costs and precomputation time.

Another question is the shape of the candidate view cells
that will be subjected to the above criteria. One option is
a regular subdivision (e.g., a kD-tree of the scene). How-
ever, the boundaries of such view cells will not coincide

with actual changes in visibility, i.e., visual events. On the
other hand, finding these visual events (e.g., using the as-
pect graph) is expensive. We therefore propose a two-tier
approach: an initial subdivision will follow (but not be re-
stricted by) the geometry in the scene. Cells of this initial
subdivision will subsequently be merged according to the
visibility information in the scene. This causes the final view
cells to approximate the important visual events in the scene.

3.2. Algorithm outline

Our view cell construction method consists of three main
steps:

1. Visibility sampling
2. View space subdivision
3. View space merging

The first step estimates visibility in the scene, which al-
lows basing the view cell construction on scene visibility
without incurring the overhead of having to calculate com-
plete visibility. We use stochastic sampling by casting rays
distributed in the whole view space. As a result we obtain
a set of maximal free line segments which we call visibility
segments. The visibility segments provide information about
scene visibility for the subsequent steps of the view cells
construction.

The second step performs an adaptive hierarchical subdi-
vision of view space. The subdivision is driven by heuristics
which aim to minimize the estimated rendering cost of the
resulting subdivision. The result is a set of elementary view
cells which satisfy certain global termination criteria (maxi-
mal memory budget or minimal render cost reduction).

The third step merges the elementary view cells to larger
ones while minimizing the increase of the estimated ren-
dering cost for each merging step. The merging progress is
recorded in a merge history tree. The initial subdivision and
the merge history define a view cell hierarchy, which allows
retrieving an optimal set of view cells for a specified gran-
ularity of the view space subdivision. Additionally, this hi-
erarchy can be used to compress the PVSs in a simple and
efficient way. The merging step will implicitly approximate
important visibility events in the scene. The three steps of
our algorithm are illustrated in Figure 2.

3.3. Cost Model

Our view cell construction is driven by a cost model which
estimates the average rendering time based on the sampled
visibility information.

The cost of a given set of view cells S is given by the
expected value of the rendering time as follows:

cr(S) = ∑
i∈S

p(i)r(PVSi), (1)
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Figure 2: (left) Visibility segments determined by the visibility sampling step; 5000 of 1M line segments are depicted for sake
of clarity. (center) Initial view space subdivision consisting of 5000 view cells. (right) 200 view cells retrieved from the merge
history tree.

where r(PV Si) is a rendering time estimator [WW03] for
the approximate PVS of cell i, and p(i) is the probability
of the viewpoint being located in view cell i. Assuming that
viewpoints will be distributed uniformly in the whole view
space, p(i) can be chosen as the ratio of the volume Vi of the
given view cell and the total volume V of the view space:

p(i) =
Vi

V
.

Alternatively, the user can specify any probability den-
sity d for viewpoint locations, so that areas where the user is
more likely to move receive more attention in the view cell
construction. p(i) is then given by:

p(i) = x∈i d(x)
d(x)

.

The rendering time for a view cell is estimated from the
rendering times for the objects in the PVS:

r(PV S) = ∑
o∈PV S

r(o).

The rendering time estimation function r(o) is difficult to
establish exactly since it depends not only on the particu-
lar set of objects and their attributes, but also on the actual
implementation and hardware. On the other hand, the view
cell subdivision should not be tied too much to a specific
hardware, neither do we have an accurate PVS to determine
the absolute value of the rendering time. Therefore we pro-
pose to loosely calibrate an analytic rendering time estima-
tion function [WW03] to a small number of target machines.
Since current graphics hardware is CPU limited for small
batches, the following function provides good results:

r(o) = max(a,bto,cpo),

where a, b and c are positive constants, and to and po are
the number of triangles and the number of projected pixels

of object o (estimated from some points in the cell) respec-
tively.

3.4. Representation of View Cells

We maintain the view space partition as a binary space par-
tition tree which is constructed top-down. The leaves of this
tree are convex polyhedra which form a set of elementary
view cells. The final view cell partition is constructed from
these elementary view cells using a bottom-up merging pro-
cedure which is recorded in the merge history tree. Note that
merging is not tied to the original subdivision and therefore
usually results in a different, more optimal tree. Both steps
of the view cell hierarchy construction will be detailed in the
next section. The representation of view cells using the two
hierarchies is shown in Figure 3.

BSP tree

Elementary view cells

Merge history tree

S

S 1

2
view cell sets
‘optimal’

Figure 3: The view cell hierarchy is represented using a BSP
tree and the merge history tree. The BSP tree provides a geo-
metrical description for elementary view cells. The merge
history tree provides a logical grouping of the view cells,
which allows extracting a set of view cells with a specified
granularity of the subdivision. The example shows two sets
S1 and S2, where the desired number of view cells for S2 is
larger than for S1.
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Note that we partition the view space only in the spatial
domain, since the observer can quickly move through the
whole directional space within a few frames by changing the
viewing direction. Fortunately, culling in directional space is
efficiently handled by view-frustum culling.

4. Adaptive View Cell Construction

4.1. Visibility Sampling

We gain information about global visibility in the scene by
sampling the whole view space. A view space sample is a 5D
entity corresponding to a ray in primal space. For simplicity,
let’s assume that the view space is defined by a 3D spatial
box of possible ray origins (view space box) and contains
all possible ray directions. The view space is then sampled
using the following strategy:

1. Select a point p inside the view space box and a direction
d using uniform distributions [CLF98].

2. Cast a ‘forward’ ray from p in direction d and a ‘back-
ward’ ray from p in the opposite direction −d.

3. Construct a line segment formed by the calculated ter-
mination points of the forward and backward rays. If at
least one of the two rays hits an object, we call the result-
ing line segment a visibility segment and store it for later
use.

The determination of visibility segments is illustrated in
Figure 4.

p1
p

2

p
3

s

s 2 s 3

1

Figure 4: Illustration of determination of visibility segments.
Three visibility samples are generated from points p1, p2
and p3, resulting in two valid visibility segments. s1 carries
information about visibility of two objects, s2 about one ob-
ject. s3 is not a valid visibility segment since it does not hit
any object.

Note that although the ray casting is performed using all
scene polygons, we use the objects (i.e., logical groups of
polygons) for representing visibility. The PVS for a view
cell is computed as a union of objects associated with the
visibility segments intersecting the cell.

There is an interesting subtlety involved in polygon orien-
tations. For a general scene, the above procedure will create
visibility segments in the interiors of objects if those regions

are not explicitly exempted from view space. If, however, the
input model is guaranteed to be watertight and the polygons
have a consistent orientation, the algorithm can detect empty
view space at no additional cost: if a ray hits the back side
of a polygon, the ray starting point is simply shifted to the
intersection point and the ray is re-cast (see Figure 5). In this
way, no visibility segments will be generated in empty space.
We have found that empty view space detection can improve
the final view cell hierarchy, because visibility regions are
more clearly separated.

Figure 5: Example of empty view space detection. The origin
of the ray lies inside the wall of the building and so the ray
first hits a back-facing polygon. We shift the ray origin to
the intersection point and the ray is re-cast. The resulting
visibility segment is shown as a thick line.

4.2. View Space Subdivision

The view space subdivision uses a top-down approach to
create a set of elementary view cells. In particular we use
binary space partitioning (BSP) maintained by a BSP tree.
Starting with a single view cell corresponding to the whole
view space, we recursively subdivide the current view cell
using either axis-aligned planes or planes aligned with scene
geometry. Each cell of the subdivision also references all vis-
ibility segments that intersect it.

The BSP construction uses greedy optimization for the
next-best split. Note that in contrast to most previous work
on BSP or kD-tree construction, we employ a priority queue
for selecting the splitting plane candidates. An entry in the
priority queue consists of a reference to a leaf node, the best
splitting plane candidate inside this leaf, and a cost reduc-
tion which would be achieved when splitting the leaf by the
plane. For each step of the subdivision, we select the node
for which its best splitting plane provides the highest render
cost reduction. The subdivision is thus refined progressively
and regions with the highest potential render cost decrease
are subdivided first.

The best splitting plane for a node is established as fol-
lows: we generate axis-aligned splitting plane candidates
aligned with the endpoints of rays intersecting the node.
Additionally, we generate planes aligned with the geome-
try contained in that node (if any). For each candidate, we
calculate the reduction of the expected rendering cost cr(S)
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that would result from subdividing the node by that plane.
This is done by partitioning the current set of visibility seg-
ments according to the plane (note that a segment can be
assigned to both sets), computing the PVSs (i.e., the union
of the objects hit by the visibility segments) for the front and
back segment sets, and using those to evaluate the reduction
of the cost. Finally, we choose the candidate plane that pro-
vides the most reduction in expected rendering cost and put
a corresponding entry in the priority queue.

The subdivision is terminated when one of the following
termination criteria is met:

• A specified maximum number of elementary view cells
have been generated. This ensures that the algorithm stays
within reasonable memory bounds.

• The cost reduction for the best splitting plane is below a
specified threshold. As the cost reduction can temporarily
stagnate, we only terminate when the reduction was below
the threshold in several successive subdivision steps.

Due to the priority-driven subdivision the view space will
be evenly subdivided regardless of the termination point.
This is not the case for depth-first approaches, where for
example a termination on low memory would leave whole
view space regions unsubdivided. Additionally, the local ter-
mination criteria used in the depth-first approach are hard to
tune.

We experienced that in some rare cases the described
greedy optimization can lead into a local minimum. Con-
sider the situation that the render cost of a node cannot be
reduced by the current split, but only by subsequent splits
of the child nodes. However, the node is never chosen for
subdivision because it provides no render cost decrease. We
have addressed this problem by computing a weighted sum
of the render cost reduction and the absolute render cost of
the node in the evaluation of its priority. A very small weight
of the absolute render cost (1%) has been sufficient to ensure
that the split is taken at some point during subdivision.

Note that the time required for the subdivision is domi-
nated by the cost evaluation for the candidate planes. To ac-
celerate this process, we limit the number of axis-aligned as
well as geometry-aligned candidates. If the number of visi-
bility segments or geometry planes is above these limits we
select their random subsets. This speeds up the selection es-
pecially for nodes near the root of the subdivision tree.

4.3. View Space Merging

View space merging is a bottom-up process which aims to
reduce the number of view cells while minimizing the cost
of the merged view cell set. We use a greedy algorithm that
always merges the pair of view cells resulting in the minimal
cost increase. This is done by maintaining a priority queue of
view cell merge candidates. Each pair of neighboring view
cells forms a merge candidate. The cost increase due to the
merge candidate consisting of view cells x and y is given as:

∆cr (x,y) = cr({x⊕ y})− cr({x,y}), (2)

where x ⊕ y is the view cell resulting from merging x
and y. The priority of the merge candidate is then given by
−∆cr (x,y).

In the beginning, the queue is initialized with all pairs of
neighboring view cells. At every step, we select the merge
candidate with the highest priority (smallest relative cost in-
crease) and merge the associated view cells. The PVS and
the estimated rendering cost of the new view cell is calcu-
lated. After the merge, the priority queue is updated by re-
moving entries corresponding to the merged view cells and
inserting new entries corresponding to the created view cell
and its neighbors. Note that the set of neighbors for a view
cell is determined using the BSP tree.

The merging process provides a sequence of view cell
sets: at every merge step we obtain a new set of view cells
with exactly one view cell less than in the previous set. We
record the whole merging process in a merge history tree.
The leaves of this tree correspond to elementary view cells.
Every internal node corresponds to a merged view cell. With
each internal node we associate the current cost of the sub-
division resulting from the corresponding merge.

Once the merge history tree is built, there are several ways
how to create a view cell partition from the tree. The eas-
iest way is to specify a target number n of view cells and
extract these from the tree (for more detail see Section 5).
These view cells can then be used as input for a visibility
preprocessing algorithm.

5. Exploiting the View Cell Hierarchy

This section discusses different possibilities for using the
constructed view cell hierarchy.

5.1. Extracting View Cells

The view cell hierarchy allows extracting the set of view
cells most suitable for the target application. Below we dis-
cuss three possibilities of view cell extraction.

Getting a specified number of view cells. Often, it is most
convenient to specify a desired number of view cells to use
for visibility calculation. This limits both the preprocessing
time and the storage required for PVS data, as well as re-
stricting the frequency with which new PVS data has to be
fetched due to crossing into a new view cell at runtime. To
obtain a given number of view cells, we perform a priority
traversal of the merge history tree. The priority of a node
is given by the cost associated with the node. When reach-
ing a leaf node, we add it to the list of resulting view cells.
When the sum of traversed leaves and the nodes in the pri-
ority queue becomes equal to the desired number of view
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cells, we terminate the traversal and add the contents of the
priority queue to the resulting view cells. The collected view
cells form a cut of the merge history tree at optimal depths
with respect to the specified granularity.

Fulfilling a given memory budget. The procedure de-
scribed above can be extended to allow specifying an ap-
proximate memory budget for the complete PVS represen-
tation (it is only approximate because it relies on the ap-
proximate PVS from the sampling step). At every step of
the tree traversal, we can easily calculate the memory re-
quirements for the current set of view cells and their approx-
imate PVSs. We can terminate the traversal when the budget
is reached and collect the resulting view cells as described
above. Note that this step can also be applied after comput-
ing the final visibility classification. In this case the memory
budget would be the real budget for storing the PVS repre-
sentation.

Extracting important view cells. An alternative to the
methods described above is view cell extraction based on
their estimated rendering cost. In particular we can use the
maximal tolerance of the increase of the estimated render-
ing cost over the minimal cost, i.e., the cost provided by the
densest view space partition (elementary view cells). The
view cells are extracted again by a priority traversal of the
merge history tree. At each step we evaluate the ratio of the
current cost (stored with the processed node) and the min-
imal cost. If the ratio falls below a threshold, we terminate
the traversal and collect the resulting view cells as described
above.

Interactive specification. In practice, the user can com-
bine these methods in an interactive setup. The selection
process can easily be accomplished with a real-time visu-
alization of the view cells and a depiction of the associated
cost and memory budgets, as well as the just described cost
ratio. Typically, the user would start by setting an initial cost
ratio and refining the result interactively. This allows the user
interactive control over the process, which is a feature often
desired by practitioners.

5.2. PVS Compression

Although the view cell hierarchy is constructed in order to
minimize the average rendering cost, it also provides a pow-
erful tool for PVS compression. As a result of the render-
ing cost minimization, the siblings in the hierarchy will have
mostly coherent PVSs. Thus, once we have calculated the
actual PVSs using a visibility preprocessing algorithm, we
can propagate the PVS information as high in the hierar-
chy as possible [GSF99]. The intersection of the PVSs of
the children is propagated to the parent and deleted from the
children, which reduces the number of references stored at
the leaves.

6. Results

We have evaluated our method on three test scenes. The first
scene (soda) represents a building interior, the second scene
(atlanta) represents 30km2 of Atlanta, and the third scene
(vienna) represents the city of Vienna.

The soda scene consists of 9129 objects formed directly
by the scene polygons, the atlanta scene scene of 3495 ob-
jects (100k polygons), and the vienna scene of 12668 objects
(8M polygons).

6.1. Evaluation Framework

In our experiments we have observed that evaluating the
view space partition by visual inspection is difficult. Often
such an inspection can even be misleading: nicely looking
view cells like those corresponding to corridors in a build-
ing, are bad in terms of the render cost. As a basic tool for
evaluating the quality of the partition we use the dependence
of the expected render cost on the number of view cells. For
selected tests, we also use histograms which show the distri-
bution of render cost among view cells for a specified gran-
ularity.

In order to compare different view cell construction strate-
gies, we cast additional evaluation samples (rays) after the
view cells have been constructed. The only purpose of the
evaluation samples is to obtain comparable render cost es-
timations. These samples determine PVSs for all view cells
of the view cell hierarchy, which are then used for evaluat-
ing equation 1. Note that although the number of evaluation
samples we used is larger than the number of initial samples,
the computed PVSs are still only approximations to the exact
ones. For methods which don’t use view space merging, the
view cell hierarchy is just defined by the initial subdivision
step.

6.2. Visibility Sampling

The first test aims to verify our assumption that a relatively
coarse visibility sampling is sufficient to establish a stable
render cost estimate for driving the view space partition. In
order to evaluate this, we have constructed view space sub-
divisions using different numbers of visibility samples (50k,
200k, 1M). The results are summarized in Figure 6. As ex-
pected, lower numbers of visibility samples generate lower
render cost estimates due to visibility undersampling. How-
ever, by casting the same number of evaluation samples, we
can observe that the resulting subdivisions provide compara-
ble render costs. For example there is only a minor improve-
ment by moving from 200k to 1M samples.

6.3. Comparison with other methods

In Figure 7, we show a comparison with other proposed
view cell construction methods. We compared 7 different
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Figure 6: Evaluation of visibility sampling. The top row of plots shows the actual render cost estimates for the soda, atlanta
and vienna scenes for subdivisions created from 50k, 200k, and 1M visibility samples. The bottom row shows a verification of
the resulting subdivisions by using 8M evaluation samples.

view cell construction methods: our method with view space
merging (AV-M), our method without view space merging
(AV-S), breadth-first kD-tree subdivision using spatial me-
dian split and along cycling axis (KD-CASM), breadth-first
kD-tree subdivision using spatial median split and along
the longest axis (KD-LASM), depth-first kD-tree subdivi-
sion along the longest axis with additional visibility-based
termination (KD-VT*), a breadth-first version of the previ-
ous method (KD-VT) and BSP subdivision aligned with the
scene geometry (BSP). For our method we casted 1.5M rays
to generate visibility samples. Note that BSP corresponds
to the method for cell and portal construction described by
Teller [Tel92] and KD-VT* corresponds to subdivisions per-
formed by Saona-Vázquez et al. [SVNB99] and Nirenstein
et al. [NB04] for visibility preprocessing in general scenes.

The results for three different test scenes are summarized
in Figure 7. A number of observations can be made from the
measured results:

• Our method performs better than the reference ones in
all tests. The gain over the best reference method (KD-
CASM) in terms of the render cost is about 20-30%.

• The gain of view space merging (AV-M) applied on our
subdivision (AV-S) is very limited. The only benefit ap-
pears in the soda scene for a lower number of view cells.

• KD-CASM performs significantly better than KD-LASM
in outdoor city scenes. In these scenes, horizontal subdivi-
sion of view cells is very important, as it separates regions
with complex visibility which see above the roofs of the
buildings from those which see only the nearby streets.
When using KD-LASM, the horizontal splits occur only
for a very high density of the subdivision.

• The plots show that BSP performs worst of the tested

methods as it cannot provide a sufficient reduction of the
render cost. This follows from the inability of BSP to sub-
divide regions with high render cost which however con-
tain no geometry. This observation is not surprising for the
atlanta scene and the vienna scene, as the method is not
designed for outdoor scenes. However, even in the soda
scene the BSP method leaves large view cells correspond-
ing to the corridors with complex visibility. On the other
hand as shown in Figure 8, our method successfully sub-
divides these high PVS regions.

• The depth-first subdivision (KD-VT*) arrives at a termi-
nation point with a cost of 50-80% higher than that of our
method for the same number of view cells. However, as
seen from the plot, it does not provide a scalable solution
with respect to the number of view cells. This problem can
be addressed by a breadth-first modification of the method
(KD-VT). Alternatively, as we show in Section 6.4, scal-
able solution can be obtained by applying our merging
step on the resulting subdivision.

• Similarly to KD-LASM, KD-VT also splits at the spatial
median of the longest axis. As we used a relatively low
PVS termination criterion, the results for these methods
are practically the same.

• Another criterion for evaluating the methods is the num-
ber of view cells needed to achieve the same render cost.
We can see that the reference methods need significantly
larger numbers of view cells in order to reach the same
render cost as the AV-S or AV-M methods. Also note
that for some methods, a particular render cost cannot be
reached within a given view cell budget.

We have also compared the KD-VT and AV-M methods
using a histogram showing the distribution of render cost
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Figure 7: Comparison of the different view cell construction methods for three different scenes (from left to right: soda, atlanta,
vienna). The top row shows the expected render cost depending on the number of view cells. The bottom row shows the render
cost ratio with respect to our AV-M method.

Figure 8: BSP based view cells have the problem that large
regions with high PVS (shown in dark/magenta) are not sub-
divided any further (subdivided down to 2734 leaves for both
methods).

over the view space volume (see Figure 9). For the AV-M
method, most of the volume is covered by lower render cost.
In contrast, the KD-VT method still contains numerous re-
gions with high render cost: there are regions with up to 3
times higher render cost compared to the maximum render
cost for the AV-M method. This observation indicates that
even if AV-M does not provide an impressive reduction of
the average render cost, it results in a significantly better ren-
der cost distribution over the view space volume.

6.4. Using view space merging on existing solutions

View space merging can be applied as a standalone tech-
nique for obtaining a scalable view cell representation from
an existing set of view cells. An example of this process is
shown in Figure 10. We can see how the initial depth-first
subdivision has been smoothed by the application of view
space merging. Additionally the render cost curve resulting
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Figure 9: Render cost / volume histogram for the AV-M and
KD-VT methods computed for the vienna scene with 15000
view cells.

from the merging process gives us information about the re-
quired granularity of the subdivision. If many initial merging
steps result only in a minor increase of the render cost, then
we can safely reduce the number of view cells for the final
visibility representation.

6.5. Influence of geometry-aligned splits

We have evaluated the influence of the geometry-aligned
splits on the expected render cost in non-axis aligned envi-
ronments. In particular, we measured the render cost curves
for our method when using only axis-aligned splitting planes
and when using also geometry-aligned planes. We lim-
ited the number of tested geometry-aligned split planes to
150. The result is summarized in Figure 11. We can see

c© The Eurographics Association 2006.



O. Mattausch & J. Bittner & M. Wimmer / Adaptive Visibility-Driven View Cell Construction

KD VT* M

1000

10000

100000

0 2000 4000 6000 8000 10000 12000 14000

av
er

ag
e

re
nd

er
co

st

view cells

KD VT*

100

Figure 10: View space merging applied on the subdivision
using the KD-VT* method.

that for this test the geometry-aligned planes give a ben-
efit from 4 to 15%. This suggests that when taking into
account the increased computational complexity connected
with geometry-aligned splits, the benefit they provide is only
marginal.
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Figure 11: Influence of geometry-aligned splits in a soda
building rotated by 30 degrees. The plots shows the render
cost ratio of using only axis-aligned splits with respect to a
method using also geometry aligned splits (render cost ra-
tio=1).

6.6. Timings

We have measured the running times of our view cell con-
struction for several scenarios. The timings measured on an
3.4GHz Intel Pentium 4 with 2GB of RAM are summarized
in Table 1. We see that for more complex scenes, the time
overhead due to geometry-aligned candidates as well as the
time required for the merging increases. Since the benefit of
these two techniques is relatively small in practice it should
be sufficient to use our priority-driven subdivision using the
cost heuristics and axis-aligned splits.

subdivision subdivision merge
scene AA + GA AA

[s] [s] [s]
soda 430.8 287 103.3

atlanta 1488 338.1 1912
vienna 1565 354.1 1569

Table 1: Timings for generating 50000 view cells using our
view cell construction method. For all tests we cast 1.5M
rays to generate visibility samples. The table contains tim-
ings for the subdivision when using axis-aligned as well
as geometry-aligned planes (AA + GA) and when using
only the axis-aligned planes (AA). We limited the number
of geometry-aligned candidate split planes to 150. The last
column shows timings for the view space merging step.

7. Discussion

7.1. Visibility sampling

The idea which drives our view cell construction algorithm
and which allows analyzing the quality of different view
space subdivisions is visibility sampling and the usage of the
visibility segments. As we have shown in the results, it is not
necessary to calculate an accurate visibility solution for each
step of the subdivision process in order to determine the fol-
lowing steps. Instead, even a relatively coarse sampling of
visibility already gives stable estimates of the render cost.
Our algorithm is therefore not limited by a slow visibility
solver. It can quickly perform a deep top-down subdivision,
which would not be possible if each subdivision step were to
depend on the outcome of a complete visibility processing
step.

7.2. Handling empty space

One of the important differences of our method compared
to techniques designed for cell and portal graph construction
is the handling of ‘empty space’, i.e., regions which contain
no geometry. The results show that even in indoor environ-
ments it is very important to further refine the subdivision in
order to adapt to visibility (rendering) complexity. A purely
geometry-based subdivision might result in big view cells
which look ‘natural’, but their PVS is way too large, even
though a significant reduction is possible (as shown in Fig-
ure 8).

7.3. Handling difficult regions

The existing visibility preprocessing methods which per-
form adaptive view space partitioning [SVNB99, NB04]
handle difficult regions (i.e., regions with large irreducible
PVS) by terminating subdivision at a specified maximal
depth. This can be costly for preprocessing as well as stor-
age. In our method this problem is addressed already at the
subdivision stage and gets further refined in the merging
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step. The subdivision uses the cost-based global termina-
tion criterion which prevents further subdivision when all
regions already have irreducible render cost. However there
might be regions where the local benefit of the subdivision
is just above the specified threshold. These regions will be
merged soon in the merging stage, and thus the correspond-
ing fragmented view cells will reside at the bottom of the
merge history tree.

8. Conclusions

We have described a new method for automatic view space
partitioning. The algorithm uses a cost model in order to
minimize the average rendering time of the resulting set of
view cells. The model is based on a global visibility esti-
mation determined by sampling. We have shown that the
method provides efficient sets of view cells for both indoor
and outdoor environments. Since we use the actual visibil-
ity of the scene for driving the view cell construction, our
view cells adapt to scene visibility changes. This is impor-
tant for example for regions with no geometry, where other
cell construction methods can fail.

As a result of the view cell construction we obtain more
than a fixed set of view cells. Depending on the properties
of the visibility preprocessing algorithm or a runtime stor-
age budget, we can extract a specified number of view cells
which provide an optimized partition for a given granularity.
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