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Figure 1: Visualization of sampling strategies (white pixels show a subset of the actual samples, missed geometry is marked red). Left: An
urban input scene and a view cell (in yellow) for visibility sampling. Middle: Previous visibility sampling algorithms repeatedly sample the
same triangles in the foreground while missing many smaller triangles and distant geometry. Right: Our solution is guided by scene visibility
and therefore quickly finds most visible triangles while requiring drastically fewer samples than previous methods.

Abstract

This paper addresses the problem of computing the triangles visi-
ble from a region in space. The proposed aggressive visibility solu-
tion is based on stochastic ray shooting and can take any triangular
model as input. We do not rely on connectivity information, vol-
umetric occluders, or the availability of large occluders, and can
therefore process any given input scene. The proposed algorithm is
practically memoryless, thereby alleviating the large memory con-
sumption problems prevalent in several previous algorithms. The
strategy of our algorithm is to use ray mutations in ray space to
cast rays that are likely to sample new triangles. Our algorithm im-
proves the sampling efficiency of previous work by over two orders
of magnitude.

CR Categories: I.3.7 [Computer Graphics]: Three-Dimensional
Graphics and Realism—Visible line/surface algorithms
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1 Introduction

Visibility is a fundamental problem in computer graphics: visibility
computations are necessary for occlusion culling, shadow genera-
tion, inside-outside classifications, image-based rendering, motion
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planning, and navigation, to name just a few examples. While vis-
ibility from a single viewpoint can be calculated quite easily, many
applications require the potentially visible set (PVS) for a region in
space, which is, unfortunately, much more complicated. A num-
ber of excellent from-region visibility algorithms exist, but most of
them are only applicable to a limited range of scenes, require com-
plex computations, and sometimes significant amounts of memory.
Therefore, sampling-based solutions have become very popular for
practical applications due to their robustness, general applicability,
and ease of implementation. In this paper we will improve upon
previous sampling-based algorithms by significantly improving the
sampling efficiency, i.e., the number of samples required to detect
a certain set of visible polygons.

To motivate our design choices, we will look at two key aspects
of any visibility algorithm: the behavior of the algorithm in ray
space, and the data structure used to store and acquire visibility
information.

Figure 2 illustrates the concept of ray space in 2D. Given a view
cell, shown as edge parameterized with s, and a scene with objects
shown in grey, we can compute visibility by considering all rays
from the view cell to a plane behind the scene, parameterized with
t. For a 2D scene, this is a 2D set of rays; for a 3D scene this is
a 4D set of rays. If this set of rays is sampled densely enough, we
will have a good visibility solution.

The inefficiency of a pure regular sampling approach as shown in
Figure 2 is that the same surfaces are sampled over and over again
(note that the definition of regular depends on the parameterization
of ray space!). Therefore, it would be beneficial if we could only
sample areas that have not been sampled before. This is shown
in Figure 3, where after an initial orthogonal sampling, only few
additional rays are needed to find all visible surfaces. In total, little
more than a 1D subspace of the 2D ray space needs to be explored
in this example. This is due to the spatial coherence of visibility. In
this paper, we exploit this coherence: starting from stochastically
sampled points, we grow lower-dimensional subspaces of ray space
using the newly introduced strategies of adaptive border sampling
and reverse sampling, which are guided by the properties of scene
visibility.
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Figure 2: Sampling in object and ray space. Left: a scene with a set
of objects. A view cell is shown as a line segment parameterized
with s. We are interested in all rays that intersect the view cell
and a second line segment parameterized with t. Middle: Shows a
subset of the possible rays. One ray is highlighted in blue. Right:
A depiction of the discrete ray space. Any ray in the middle figure
corresponds to a point in ray space. The blue point corresponds to
the blue ray in the middle figure.
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Figure 3: Left: The scene sampled orthogonally. Middle: Addi-
tional samples to capture oblique surfaces. Right: The rays used to
sample the scene are shown in corresponding colors.

The second key aspect of a visibility algorithm is what data struc-
ture is used to store visibility information. The most complete, but
also complex, way is to store 4D ray space. For large scenes, this
entails prohibitive levels of memory consumption. Conservative
algorithms often store the shadow volume, whereas sampling algo-
rithms use the volume of 3D space that has not been sampled yet
(the so-called void volume, Figure 4); but these data structures still
require several times the memory taken by the scene description
itself. Alternatively, the boundary of the void volume (the void sur-
face [Pito 1999]) can be used, which is easy to sample from one
point in space, but difficult to manipulate. In this paper, we do not
store visibility information beyond the PVS at all, relying on our
new reverse sampling approach to penetrate the void surface based
on the current sample only.

The key contribution of this paper is an intelligent sampling algo-
rithm that drastically improves the performance of previous sam-
pling approaches by combining random sampling with determin-
istic exploration phases. The algorithm requires little memory, is
simple to implement, accepts any triangular test scene as input, and
can be used as a general purpose visibility tool.

2 Overview

2.1 Problem Statement

We consider visibility problems that are posed as follows: As first
input we take a three-dimensional scene consisting of a set of trian-
gles, T S. We do not rely on connectivity information, volumetric
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Figure 4: Representing visibility from a single point. Left: indepen-
dent samples. Middle: the void volume. Right: the void surface.

objects, or large polygons as potential occluders (such a set of tri-
angles is often called triangle soup). As second input we consider a
subset of ray space Ω, usually defined by the rays emanating within
a 3D polyhedron called view cell and intersecting the bounding box
of the scene. A ray can be defined by a starting point and a direction.
Using T S and Ω, we can define a visibility function v : Ω → T S, so
that each ray in Ω maps to the triangle in T S that it intersects first.

The exact solution of the visibility problem is the range of this func-
tion, v(Ω)⊆ T S, also called exact visible set EVS. Our algorithm is
aggressive ([Nirenstein et al. 2002]), i.e., it calculates a potentially
visible set PV S ⊆ EV S.

Our algorithm can be used to solve the visibility problem in differ-
ent applications (see Section 5.6). A usage scenario to keep in mind
for the following exposition is a visibility preprocessing system for
real-time rendering: the view space (set of possible observer loca-
tions) is partitioned into view cells. In a preprocessing step, our
algorithm is used to calculate and store a PVS for each view cell
(note that only its boundary polygons are taken into account, since
any ray leaving the view cell can be represented by a ray on the
boundary). At runtime, the view cell corresponding to the current
observer location is determined, and only the objects in the associ-
ated PVS are sent to the graphics hardware, leading to significant
savings in rendering time.

2.2 Algorithm Overview

The algorithms in this paper are based on ray shooting and assume
the capability to trace a ray x and compute its first intersection with
a scene triangle t ∈ T S, i.e., to compute the triangle t = v(x) (fast
ray tracers include OpenRT [Wald et al. 2003] and the recently pre-
sented MLRTA [Reshetov et al. 2005]).

The idea of a sampling solution is to select a sequence of rays X =
xi, trace the ray and add the triangle v(xi) to the visibility set PV S.

In this paper, we will address the problem on how to sample effi-
ciently, that is how to improve the chances of finding new triangles.
We will start with one of the most popular sampling strategies, ran-
dom sampling (Section 3.1). Then we will show how to use vis-
ibility information from previous samples to construct intelligent
sampling strategies based on ray mutation to complement random
sampling:

Adaptive Border Sampling is an algorithm to quickly find nearby
triangles by sampling along the borders of triangles previously
found to be visible (Section 3.2).

Reverse Sampling is an algorithm to sample into regions in space
that are likely to be near the boundaries of visible and invisible
space, i.e., the void surface (Section 3.3).



In Section 3.4, we will show how to combine the different sampling
algorithms in order to obtain guided visibility sampling, a complete
hybrid random and deterministic sampling algorithm. The algo-
rithm is called guided because both sampling strategies are guided
by visibility information in the scene (see Section 5.4 for a more
detailed discussion).

3 Visibility Sampling

All rays in the scene form a 5D space. A ray x has a starting point xp
(3D) and a direction xdir (2D). A typical visibility query is to give a
region R in 3D space and ask what is visible along the rays leaving
the region (view cell). While this defines a 5D set of rays, we only
need to consider a 4D set of rays in practice; the rays starting at
the boundary δR of the viewing region. Additionally, all triangles
intersecting R are classified as visible.

3.1 Random Sample Generator

The random (or pseudo-random) sampling algorithm selects a se-
quence of random samples X = xi from the scene. The probability
distribution for each new sample p(xi) is independent of all previ-
ous samples x1, ...,xn−1. The question of sampling uniformity for
random sampling has been explored in the context of form-factor
computation [Sbert 1993]. We sample the position and ray direc-
tion uniformly using the following formulae:

u = ξ1, v = ξ2, φ = 2πξ3, θ = arcsinξ4,

where the ξi are independent Halton sequences [Niederreiter 1992],
and (u,v) are the normalized coordinates on a view cell face. While
random sampling alone suffers from similar inefficiencies as regu-
lar sampling (see Section 1), it will be used to seed the more effi-
cient strategies described next.

3.2 Adaptive Border Sampling

This sampling algorithm is a deterministic ray mutation strategy
that covers most of the ground work to make our system success-
ful. This strategy leaves the ray starting point xp on the view cell
fixed while covering adjacent triangles in object space, practically
constructing a local visibility map [Bittner 2002] from the selected
view cell point.

The key idea of this sampling strategy is that it adapts the sampling
rate to the geometric detail of the surface (see Figure 5). There-
fore, it is unlikely that subpixel triangles are missed, which is a
problem for methods that sample objects regularly. The method
performs especially well for the most frequent case of a connected
mesh, but does not assume or use any connectivity information.
The connected regions are discovered in the random sampling step
(therefore, scenes with many small disconnected meshes like trees
remain a challenge for the approach).

The algorithm proceeds as follows. If a triangle t = (p1, p2, p3) is
hit for the first time by a sample ray x = (xp,xdir), we enlarge t by
a small amount to obtain an enlarged polygon t ′ , and adaptively
sample along its edges (Figure 5).

For each edge, we use two rays xl and xr, and the corresponding
samples hit(xl) and hit(xr) in world space. If the rays xl and xr
hit different triangles, we recursively subdivide the edge, up to a
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Figure 5: Adaptive border sampling: Top: If we hit a new surface,
we sample nearby points on the border polygon t ′. Bottom: Adap-
tive subdivision of an edge of t ′.

given threshold. At this point, we also detect depth discontinuities
between the new samples and the original sample on the triangle,
which is already a part of reverse sampling as described in the next
section.

The actual method used for border enlargement deserves attention.
In order not to miss any adjacent triangles, the border polygon t ′
should be as tight as possible. On the other hand, if it is too tight,
t will be hit again due to the numerical precision of ray shooting.
If the enlargement were done in object space, this would happen
for near edge-on or very distant triangles. We therefore enlarge t in
ray space by rotating rays to the vertices of t to their new positions
on t ′ by a small angle. This is more robust because it depends nei-
ther on the distance of the triangle nor on its orientation, but only
on the numerical precision of the ray representation. In practice,
this means that for each vertex, the new vertices are put on a plane
perpendicular to the ray.

The shape of t ′ is chosen so that the ray space distance to t is fairly
constant. This is not possible with only 3 vertices, since sliver tri-
angles would lead to singularities. We therefore chose t ′ to be a
polygon of 9 vertices. For each vertex pi of t, three vertices pi, j on
t ′ are generated. Two vertices are generated each on a vector di, j
perpendicular to the ray and to one of the adjacent edges, respec-
tively. The third is the midpoint of the other two, pushed away from
t along the angle bisector di,i:

di,i+1 = N((pi − xp)× (pi+1 − pi))
di,i−1 = N((pi − xp)× (pi − pi−1))

di,i = N(di,i−1 +di,i+1) if di,i−1 ·di,i+1 > 0, else:
N((pi − xp)×di,i−1 +di,i+1 × (pi − xp))

pi, j = pi + ε · |pi − xp| ·di, j

where N(v) is the vector normalization operator. di,i is chosen to
be numerically robust. For backfacing triangles, the di, j need to be
inverted.

Adaptive border sampling efficiently explores connected visible ar-
eas of the input model from a single viewpoint along a 1D curve in
ray space (see Section 5.4). However, it cannot penetrate into gaps
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Figure 6: Reverse Sampling: Left: initial hit on triangle t. Mid-
dle: the new ray to predicted(x) is blocked by a much closer tri-
angle t ′. Right: Reverse sampling mutates the starting point on the
view cell so that the ray passes through pnew (yellow) and reaches
predicted(x).

visible only from other portions of ray space. This is handled by
reverse sampling.

3.3 Reverse Sampling

This algorithm is a deterministic mutation strategy that allows pen-
etrating into as yet uncovered regions of space. Note that this can-
not be done perfectly: finding the actual void volume is equivalent
to the original visibility problem. However, the adaptive sampling
process gives good candidate locations for further sampling rays,
namely at discontinuity locations. This strategy works by changing
the starting point of the ray instead of its direction.

A discontinuity is detected during the adaptive sampling of an
edge by comparing the distance of the ray origin to the actual
hitpoint |hit(x)− xp| with the distance to a “predicted” hitpoint
|predicted(x)− xp|. The predicted hitpoint is just the intersection
of the ray x with the plane of the original triangle t. If the new
hitpoint is considerably (∆) closer, i.e.,

|predicted(x)− xp|− |hit(x)− xp| > ∆,

the ray is obviously occluded by a closer triangle. Note that we do
not check the reverse case (jump from closer to farther triangle) as
this will be detected when doing adaptive border sampling for the
farther triangle. We calculate a mutated ray from a different view
cell position to the predicted hitpoint so that it passes by the occlud-
ing triangle. For this, the plane p = (xp,hit(x),hit(xold)) is inter-
sected with the newly found triangle (xold is the previous ray from
which x was generated). On the intersecting line, we select a point
pnew which lies just outside of the new triangle. The mutated ray
is now constructed with xnew,dir = predicted(x)− pnew as direction
vector, and xnew,p = intersect(viewcell, line(pnew, predicted(x)) as
origin (see Figure 6). If the new ray is not contained in the ray space
Ω (i.e., it does not intersect the view cell), however, it is discarded.

The new ray xnew is now treated as independent ray, and the triangle
it intersects will be added for adaptive border sampling like any
other triangle, but this time with the new view cell origin.

For the 2D example in Figure 3, reverse sampling corresponds to a
horizontal movement in ray space.

3.4 Combining the Different Sampling Algorithms

The sampling strategies presented so far can be combined into an
extremely efficient guided visibility sampling algorithm. Its two
main components are a sample generator for exploring the ray space
with independent random samples, and a sampling queue for propa-
gating the ray using adaptive border sampling and reverse sampling.
The algorithm is described by the following pseudocode:

3.5 Termination criteria

Depending on the application requirements, there are several op-
tions regarding when to stop casting rays for a view cell: a) a fixed
criterion, allocating a number of rays or an amount of time for the
computation of each view cell, or b) an adaptive criterion, termi-
nating if the number of newly found triangles per a certain number
of samples falls below a threshold, or most preferably, c) a com-
bination of both. A typical example for such a criterion is: stop
the iteration when not more than 50 new triangles are found for 1M
rays, or when a total of 10M rays has been shot, whichever comes
first.

4 Results

4.1 Overview

To compare the efficiency of our algorithm to previous work, we
use the following algorithms: GVS, our guided visibility sampling
algorithm with adaptive border sampling (ABS) and reverse sam-
pling (RS); and RAND, random sampling (in GVS, a value of ep-
silon of 5e-5 was used for enlarging triangles). We have dedicated
separate subsections to the comparisons with NIR, the main other
existing visibility sampling method published by Nirenstein and
Blake [2004] (mainly because this algorithm has a slightly differ-
ent goal than GVS); and EXACT, Bittner’s [2003] exact visibility
algorithm.

The test scenes selected are (see Figure 7 and Table 1): PPLANT,
the complete UNC Power Plant model; CITY, a city model of the
ancient city of Pompeii generated using the CityEngine [Müller
et al. 2006]; CANYON, a dataset of the Grand Canyon; and
CUBES, a simple scene of random cubes. The tests were conducted
on an Intel Pentium4 3.2GHz with 4GB of main memory. The
graphics card for NIR was an NVIDIA GeForce 7900GTX 512MB.



Scene triangles size vc
CANYON 2,242,504 10x5x3 km 140x72 m
CITY 5,646,041 320x312x9 m 15x2.2 m
PPLANT 12,748,510 200x61x81 m 2x1.3 m
CUBES 24,000 100x100x100 m 1.5x1.5 m

Table 1: Statistics for all scenes. vc denotes the average size of
view cells used in the model.

Figure 7: Top left: CITY. Top right: CUBES. Bottom left:
PPLANT. Bottom right: CANYON. Inlays: view from a view cell.

For GVS and RAND, we used Intel’s multi-level ray tracer (ML-
RTA [Reshetov et al. 2005]), which allowed sampling rates between
about 800K/s and 1200K/s, with peaks up to several million sam-
ples/s. The sampling rate depends on the scene type (not so much
on the size—PPLANT had a higher sampling rate than CANYON,
for example), and on the coherence of the rays (with random sam-
ples and ABS samples being faster depending again on the scene).
The overhead of the sampling selection process varied between 5
and 15%, depending on the relative distribution of random, ABS
and RS rays.

4.2 Asymptotic behavior

We first analyze the theoretical properties of the algorithms in terms
of their sampling behavior, i.e., on a sample-by-sample basis, since
this is the only comparison that does not depend on the individual
implementation. Since we do not have an exact visibility algorithm
that runs in reasonable time on larger scenes, we can only study
their asymptotic behavior on a small number of view cells. Fig-
ure 8 provides a detailed analysis of the CANYON scene, graphing
the pixel error (calculated by counting the false pixels in a large
number of random renderings [Nirenstein and Blake 2004]) and the
number of triangles found over the number of samples for GVS
and RAND. The top left image shows that GVS converges linearly
as long as the deterministic strategies (ABS and RS) can be used
for most triangles. The black dot on each view cell curve shows
when our termination criteria terminates the PVS search (we used
50 or less new triangles found per 1M samples). It can be seen that
this happens in a fairly well converged state already. The graph also
shows that the behavior is very similar for all view cells. The length
of the linear segment only depends on the final PVS size.
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Figure 8: Detailed asymptotic analysis for 5 view cells for the
CANYON model (see text for details). The pixel errors are mea-
sured on a 1000x1000 screen, equivalent to 10−4%. The plots in
the lower right image show the blue view cell from the other im-
ages.

The top right figure shows RAND in comparison. The convergence
of RAND looks mainly logarithmic and has a very quick falloff af-
ter an initial strong phase. It is especially noteworthy that even at
15M samples, when GVS has already long converged, RAND is
still 50K triangles behind GVS for most view cells. The bottom
right figure analyzes this behavior on an even larger scale for the
dark blue view cell from the other graphs. This figure confirms the
quick convergence of GVS, and shows that even after 200M sam-
ples, RAND is still several thousand triangles behind GVS. It can
be concluded that it would take RAND several orders of magni-
tude longer to find a PVS that GVS can find with about 7M to 8M
samples.

Finally, the bottom left figure proves that the PVS size correlates
strongly to average pixel error, and that the termination criterion
discussed above works well in practice, bringing the average pixel
error below 30 pixels on a 1000x1000 screen. Due to the better
distribution of initial samples, RAND shows lower average pixel
error in the phase where GVS searches mainly deterministically.
However, to reach the same pixel errors as provided by GVS in a
converged state, RAND has to calculate a similar number of tri-
angles in the PVS, leading to the same observation as before, that
similar pixel error requires orders of magnitude more samples than
with GVS.

4.3 Practical results

Next, we demonstrate that these findings generalize to a larger num-
ber of scenes, and provide a practical analysis including running
times. Table 2 summarizes our findings.

We used the same convergence criterion of 50 triangles per 1M sam-
ples for GVS, and a constant 150M rays for RAND. It can be seen
that this results in very similar average and maximum errors for
both algorithms. However, the running times differ by more than
an order of magnitude, which reflects the good convergence behav-
ior of GVS with respect to RAND shown above. The table also lists
results for NIR, which are discussed in the following subsection. In
addition to the error we also give the size of the PVS in terms of the
whole model size (an EVS was not available in reasonable time). A
higher value means a more accurate solution.



Alg. Avg.Err. Max.Err. time PVS

C
A

N
Y

O
N GVS 35 239 7.9s 6.7%

RAND 67 828 183s 6.3%
NIR512 2,191 8,215 6.8s 5.8%
NIR1024 519 2480 11.6s 6.3%

C
IT

Y

GVS 22 230 6.1s 1.1%
RAND 70 625 69s 0.4%
NIR512 1,292 8,655 5.4s 0.2%
NIR1024 631 8,965 8s 0.4%

PP
L

A
N

T GVS 23 211 30s 0.8%
RAND 69 825 129s 0.5%
NIR512 3,225 17,169 24s 0.4%
NIR1024 1,549 8,317 25.9s 0.6%

Table 2: Statistics for all scenes averaged over a number of view
cells. We used a threshold of 50 or less triangles found per 1M
samples to cut off computation for GVS. For RAND, we shot 150M
rays for each test. Errors are number of false pixels on a 1000x1000
screen, which corresponds to 10−4%. Results for NIR are given at
512x512 and 1024x1024 resolution. The intrinsic parameters had
to be adjusted for each scene to obtain reasonable results (see the
comments in Section 4.4). The last column shows the average size
of the calculated PVS as a percentage of the whole model.

4.4 Comparison to hardware sampling

Nirenstein and Blake [2004] recently published an interesting adap-
tive regular sampling algorithm which uses graphics hardware to
adaptively sample hemi-cubes on the view cell. It is difficult to di-
rectly compare NIR and GVS. On the one hand, they are both based
on the same atomic operation—taking a visibility sample. This
is because sampling with graphics hardware and with a ray tracer
is functionally practically equivalent due to the available sub-pixel
precision (usually 12 bit) in current graphics hardware.

The time complexity, however, differs significantly between the two
algorithms. The time complexity of ray casting is linear in the num-
ber of rays and, due to spatial data structures, logarithmic in the
number of objects. In practice, we have also observed a strong de-
pendence on the type of the scene and the implementation of the
ray tracer, which makes general predictions on the scalability with
respect to scene size very hard.

For graphics hardware, the basic operation is an item-buffer render.
Depending on whether a particular view is mostly fill or geometry
limited, the resolution of this item buffer has more or less impact
on the rendering time. Our implementation of NIR rendered mod-
els from multiple vertex buffers stored directly in video memory,
which provided triangle throughput near the theoretical maximum
on the card we used (between 130 and 190M triangles/s, depending
on how many vertices were shared in the model—note that some
vertices had to be duplicated to allow item buffer rendering). Only
on the CANYON model did we observe a fill rate limitation (9 vs.
12 hemicubes/s for 512 vs. 1024 resolutions), whereas CITY and
PPLANT were geometry limited (7 and 2 hemicubes/s).

Efficient acceleration algorithms exist for both architectures, if a
certain amount of preprocessing is tolerated. Of particular impor-
tance for visibility processing is that the complexity of scenes that
can be handled by ray tracing is limited only by the available stor-
age space, as ray casters can work efficiently out of core (e.g., Wald
et al. [2004] have demonstrated that a 350 million polygon model
can be ray cast at 2-3 frames per second). Furthermore, it should
be pointed out that rasterization benefits from hardware accelera-
tion, whereas ray tracing is still run in software. Recent advances
in hardware for ray tracing [Woop et al. 2005] promise a huge po-

tential for improving the speed of sampling-based algorithms like
GVS even further, once this technology becomes more common-
place.

However, the main difference between the algorithms is the prin-
cipal goal. NIR aims to increase rendering speed by aggressively
culling more objects than are actually occluded, the rationale being
that large gains in rendering speed can be obtained if errors in the
final image are tolerated. Indeed, NIR consistently underestimates
the PVS, as shown in Table 2 (note that even for an error thresh-
old of 0, a significant rest-error is reported for NIR [Nirenstein and
Blake 2004]).

While this approach is valuable for applications like quick preview-
ing etc., where a resolution can be fixed, and an average of, for
example, 1000 false pixels is tolerable, many applications require
a more accurate PVS. This is where GVS excels. The GVS algo-
rithm aims to provide the most accurate PVS possible with a min-
imum number of samples. Therefore, the performance metric for
GVS is not the total percentage of culled objects, but the degree
to which the actual PVS can be approximated. Our results show
that GVS, using a limited number of samples, consistently finds the
largest PVS, resulting in average pixel errors below 0.005%. This is
important for any visualization application that relies on visibility
preprocessing (especially if antialiasing is used or the output reso-
lution is not fixed in advance), but also for a number of other appli-
cations where reliable (and practically exact) visibility is required,
e.g., computational geometry, GI, and robotics.

It should be noted for the results in Table 2 that NIR results are de-
rived through a PVS subdivision threshold, which works differently
from the method used in GVS and RAND and can therefore not be
compared directly. We found that this threshold was very sensitive
to the type of the scene and had to be tuned so as not to lead to ex-
cessive subdivision or too early termination in each scene separately
(for example, in once case the error for the 1024 resolution was sig-
nificantly worse than for 512, due to premature termination). The
reason for NIR’s inability to pick up the complete PVS lies both in
the regular sampling strategy, which forces a very fine subdivision
on the view cell in order to pick up sub-pixel triangles, and in the
thresholding for the adaptive subdivision, which can prematurely
terminate the subdivision.

4.5 Comparison to exact visibility

We compared our algorithm to EXACT on the CUBES scene, from
a view cell of about 1.5x1.5m. EXACT took 19s on a PIV 1.7GHz
PC to find 3,743 visible triangles. To find the same number of tri-
angles, GVS required about 3s. For GVS, a screenspace error of
0.001% was already reported after 2s. More interesting, however,
is the fact that both GVS and RAND found significantly more vis-
ible triangles than EXACT if given enough samples. For example,
3,850 triangles were found after only 15s by GVS. Note that EX-
ACT was used on an “as is” basis—better results could certainly
be achieved by tuning numerical thresholds intrinsic to the method.
This shows clearly that the accuracy of visibility algorithms, even
exact ones, is ultimately limited by numerical issues.

5 Related Work, Discussion and Applica-
tions

A large volume of research has been devoted to visibility prob-
lems due to their importance in computer graphics, computer vi-
sion, robotics and other fields. This section compares various as-



pects of the proposed visibility sampling algorithm to a wider class
of from-region visibility algorithms. For a general overview, we
can recommend excellent surveys of visibility problems and algo-
rithms [Durand 1999; Cohen-Or et al. 2003].

From-region visibility algorithms are usually classified as exact
(potentially visible set PVS = exact visible set EVS), conservative
(PVS ⊇ EVS), aggressive (PVS ⊆ EVS), or approximate (PVS ∼
EVS).

5.1 Exact Visibility

Exact solutions to compute visibility from a region in space have
been rare [Duguet and Drettakis 2002; Durand 1999], but recently,
two algorithms have been published [Nirenstein et al. 2002; Bittner
2003] and further improved upon [Haumont et al. 2005; Mora et al.
2005] that are both exact and work for general scenes. While exact
algorithms have been the holy grail of the visibility community for
a long time, these two algorithms show that the complexity inherent
in the visibility problem may be an obstacle to make exact visibility
widely applicable. The high running times and high complexity of
implementation are critical, and numerical robustness issues can ac-
tually make the solution as approximate as a sampling-based strat-
egy (see [Bittner 2003]). We believe that sampling-based methods
and exact methods complement each other, as they have different
strengths and weaknesses.

5.2 Conservative Visibility

Several authors stress the importance of conservative visibility
computations, i.e., never underestimating the visible set. Since this
problem is almost as hard as the exact visibility problem, prac-
tically all published conservative from-region algorithms simplify
the problem by imposing certain restrictions on the scene. Typical
restrictions are the limitation to 2.5D visibility [Wonka et al. 2000;
Bittner et al. 2001; Koltun et al. 2001], architectural scenes [Airey
et al. 1990; Teller and Séquin 1991], the restriction to volumet-
ric occluders [Schaufler et al. 2000], or the restriction to larger oc-
cluders close to the view cell [Leyvand et al. 2003; Durand et al.
2000]—this last restriction is implied by the nature of the data struc-
tures used to store visibility information. While it can be argued
that larger occluders can be synthesized from smaller ones [Andu-
jar et al. 2000], this is not possible in general. The guarantee to
include all visible geometry in the PVS may be important for some
applications, but ultimately, sampling-based methods can be much
more successful:

1. As opposed to the published conservative algorithms, they do
not make any assumptions about the scene, allowing them to
handle a much larger variety of scenes.

2. Due to their ease of implementation and robustness, non-
conservative algorithms are more practical for commercial
products such as computer games [Aila and Miettinen 2004],
and are already used in this context.

3. Numerical issues often make conservative algorithms non-
conservative in practice.

5.3 Aggressive Visibility

Since visibility is such a fundamental problem, general, robust and
practical tools are important to complement the specialized algo-
rithms discussed before. These tools are almost universally based

on sampling. The two most popular solutions are to randomly select
a large number of rays to sample visibility [Schaufler et al. 2000;
Airey et al. 1990; Shade et al. 1998], or to first sample the boundary
of the view cell with points and then sample visibility from each of
these points [Levoy and Hanrahan 1996; Stuerzlinger 1999]. In
the context of view planning for laser range scanners, sampling
algorithms exist that store the void surface or the void volume to
compute the next-best view [Pito 1999]. A similar algorithm was
also used for the generation of textured depth meshes [Wilson and
Manocha 2003]. Another option is to shoot rays from the scene tri-
angles towards the view cell [Gotsman et al. 1999], which leads to
oversampling of ray space for most scenes.

Nirenstein and Blake [2004] were the first to realize the full poten-
tial of sampling for visibility computation. They proposed a new
approach which uses graphics hardware for sampling. As discussed
in Section 4.4, this algorithm aims to reduce the rendering time by
culling even visible triangles as long as this does not result in sig-
nificant rendering error. This is opposed to our algorithm, which
always tries to find the best possible approximation of the exact
visible set.

5.4 Algorithm Analysis

Ray space analysis. In the introduction in Figure 3, we have argued
that it is desirable not to sample the ray space regularly. The right
image in this figure shows that only an approximately 1D subspace
of rays needs to be considered in this simple 2D example. Our new
algorithm samples ray space more intelligently: random sampling
places initial seed points in ray space to stochastically search for
regions in ray space that have not been explored yet. To continue
the example for 2D as in the figure, adaptive border sampling corre-
sponds to a vertical expansion in 2D ray space (since the viewpoint
remains fixed) which only proceeds into yet unexplored areas. A
particular advantage of the adaptive border sampling method is that
the sampling rate is adapted to the geometric complexity of the vis-
ible surfaces. Reverse sampling, on the other hand, is a movement
in the horizontal direction (since the hitpoint remains fixed) in cases
where these movements promise to lead to not yet explored regions.

For the full 3D case, it is instructive to study our algorithm in terms
of the visibility complex [Durand 1999]. The visibility complex
describes a partition of the 4D ray space into 4D regions of rays
that hit the same object (note that ray space is strictly 4D because
we are only interested in rays starting from the view cell). The 3D
boundaries of this partition are called tangency volume and consist
of rays tangent to scene objects. Samples placed along the object
borders therefore correspond to samples near the tangency volume
of the object in dual space. Since we keep the viewpoint (2 degrees
of freedom) fixed during the deterministic ABS exploration phase,
we need to sample a 1D set only. Without ABS, we would ignore
the tangency volumes and have to sample the whole 2D subset of
ray space defined by the chosen viewpoint.

Reverse sampling, on the other hand, looks for lines tangent to two
scene edges. In ray space, these lines are near intersections of two
tangency volumes. These intersections are called bitangents and are
only 2D. For reverse sampling, the viewpoint is allowed to move
along a plane (1D), so in total RS also samples a 1D set. The com-
bined ABS and RS strategies therefore correspond to explorations
of the 4D ray space along those 1D curves that are most likely to
reveal new objects. This explains the high efficiency of the GVS
algorithm.

Another useful interpretation of the ABS sampling strategy in 3D
is based on the visibility map [Bittner 2002]. The visibility map
is a structure that contains all visible line segments in a given view.



These segments can be characterized mainly as flat and corner (inte-
rior edges of a mesh), or shadow (depth discontinuities). The ABS
sampling strategy places samples at all edges of the visibility map
(without explicitly constructing it). Samples on interior edges of a
mesh serve to find connected sets of a mesh (trivially adjacent re-
gions in the visibility complex). Samples at the shadow edges serve
to discover depth discontinuities, where objects are partly occluded
by other objects. Shadow edges are where the RS sampling strat-
egy is used to refine the sampling (by finding the bitangents in the
visibility complex).

Accuracy. The term conservative (or even exact) visibility is ac-
tually quite misleading. Most algorithms, though conservative in
theory, are not conservative in practice due to numerical robust-
ness problems. This is especially true for algorithms relying on
graphics hardware. Furthermore, complex algorithms are prone to
implementation problems. Due to the much improved sampling
efficiency, the magnitude of error introduced by our algorithm is
comparable to that of other error sources. Such errors are usually
tolerated for conservative algorithms (see Section 4). Other algo-
rithms that are often used in conjunction with visibility processing,
like level-of-detail algorithms or shadow mapping, are an additional
source of errors.

Scene complexity. One distinguishing feature of our sampling-
based algorithm is that it can handle arbitrary types of scenes with
high overall and visual complexity. It does not rely on occluder
synthesis, and depends mostly on the size of the visible set, not on
the total scene complexity.

5.5 Limitations and Future Work

Although guided visibility sampling generally finds the major part
of the PVS very quickly, the fact that it is stochastic on the one
hand and guided by the visibility in the scene on the other hand
makes the final accuracy dependent on the structure of the scene.
Therefore, we cannot give any hard guarantees for the pixel error of
the calculated PVS. Also, the ability to explore connected ray space
subsets in the far distance is limited by the numerical precision of
the ray direction vector. For ABS, this means that triangles that
have a solid angle of less than double precision accuracy when seen
from the ray origin will most likely be missed.

The worst case of scene complexity is in scenes that consist of a
large set of small disconnected triangles, such as forest scenes or
synthetic scenes of random triangles. The visibility of such scenes
is so complex that even sampling-based solutions will either have
high error or take a long time to compute. Still, it is important to
point out that sampling-based algorithms are the only ones that are
able to even process these scenes.

In this respect, an avenue of future work is to incorporate geomet-
ric LOD into the sampling framework, similar to the vLOD system
proposed by Chhugani et al. [2005]. Geometric LODs could po-
tentially increase the speed of the ray tracer, and make intersection
computations more robust because small triangles in the distance
get replaced by larger ones. However, robust geometric LOD is not
available for all scenes, and integrating LODs into ray tracers is a
current topic of research. Furthermore, the error metric used to cre-
ate the LODs impacts the accuracy of the visibility algorithm and
therefore the usable output resolutions.

5.6 Applications

One important strength of sampling-based methods is their ease of
application. We will discuss a number of application scenarios for
our algorithm.

Visibility preprocessing for real-time rendering and games. This is
the scenario already described in the overview, and one of the most
important applications for GVS. For example, the scenes of current
computer games are becoming increasingly general, so that special
purpose algorithms (cells and portals, and 2.5D solutions) cannot
be used anymore, while exact algorithms are difficult to implement
and error-prone. GVS can be used in all stages of game develop-
ment: During level design, the number of rays can be limited so that
a coarse solution can be provided almost instantaneously. For the
final production, the PVS can be calculated with high accuracy. It
is very important to create a PVS that is as close to the EVS as pos-
sible and not dependent on a particular output resolution, since the
resolution the application will be run at is not known in advance. In
addition, antialiasing methods (supersampling and multisampling)
use information from subpixel triangles, so that the virtual resolu-
tion is even higher. Note that although scenes in computer games
are inherently dynamic, the major part of the scene is still static, so
huge gains in rendering speeds can be obtained. Furthermore, GVS
works on arbitrary polyhedral view cells, so that the view space can
be chosen freely.

Online and networked visibility. As shown in the results, a reason-
able approximation to the EVS with low pixel error can be found in
a second or less. Therefore, GVS can be used for online visibility
culling by running it on a separate processor or over the network,
as described in the Instant Visibility system [Wonka et al. 2001].
In this case, transmitting the PVS on a per-object basis will im-
prove results because it suffices for one triangle of an object to be
found by GVS in order to classify the whole object as visible. Fur-
thermore, a small modification to GVS makes the algorithm better
suitable to progressive evaluation: instead of interleaving ABS and
random samples from the beginning, create a certain number (e.g.,
1M) of random samples in a startup phase, and only then use those
to seed the ABS rays. This will give a better distribution of sam-
ples in the initial phase of the algorithm, since ABS systematically
“flood fills” the PVS around its seed point, and it takes some time
until all image regions have been reached.

Impostor generation. In many scenes, visibility culling is not suf-
ficient to guarantee a high frame rate everywhere in the model.
Therefore, image-based methods can be used to replace complex
scene parts by so-called impostors. However, since impostors trade
rendering speed against memory consumption, it is important to
find the exact visible parts of the scene to avoid wasting impostor
memory on invisible geometry [Jeschke et al. 2005]. GVS is ideally
suited for this purpose since it provides accurate per-triangle visi-
bility information, so that only those object parts that are actually
visible need to be stored in an impostor.

Visibility as decision basis. Many practical applications require
accurate visibility information as part of a decision making pro-
cess. Examples include visibility analysis in urban planning (does
the new skyscraper impact old town?), military applications (line
of sight culling, tactical battlefield management [McDermott and
Gelsey 1987]), telecommunications (visibility of emitters), robotics
and many more. GVS is advantageous for these problems because
it is general purpose and does not have any parameters to tweak,
and does not depend on any special properties of the scene.



6 Conclusion

We have presented a visibility sampling algorithm to compute a full
3D visibility solution from a region in space. The proposed algo-
rithm improves the efficiency of previous sampling strategies by
over two orders of magnitude, thereby allowing visibility solutions
with negligible error to be computed in reasonable time. The pro-
posed algorithm works on arbitrary so-called polygon soups and
does not require any memory beyond that used by the ray caster.
Due to the new sampling strategies employed in the algorithm,
its accuracy is competitive even with exact and conservative ap-
proaches, while it is also extremely simple to implement.

We have provided evidence that Guided Visibility Sampling closes
an important gap in visibility research. It combines the speed and
ease of implementation of sampling-based and special-purpose con-
servative algorithms with most of the accuracy of exact solutions.
Thus, GVS can be used as a general purpose visibility tool.
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