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Importance-Driven Focus of Attention
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Abstract—This paper introduces a concept for automatic focusing on features within a volumetric data set. The user selects a
focus, i.e., object of interest, from a set of pre-defined features. Our system automatically determines the most expressive view
on this feature. A characteristic viewpoint is estimated by a novel information-theoretic framework which is based on the mutual
information measure. Viewpoints change smoothly by switching the focus from one feature to another one. This mechanism is
controlled by changes in the importance distribution among features in the volume. The highest importance is assigned to the feature
in focus. Apart from viewpoint selection, the focusing mechanism also steers visual emphasis by assigning a visually more prominent
representation. To allow a clear view on features that are normally occluded by other parts of the volume, the focusing for example
incorporates cut-away views.

Index Terms—Illustrative visualization, volume visualization, interacting with volumetric datasets, characteristic viewpoint estimation,
focus+context techniques
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1 INTRODUCTION

Visual presentation of underlying non-graphical data is one of the most
important visualization aims. It serves as a communication medium
and can be motivated by, e.g., educational, infographics, or commer-
cial purposes. This paper helps in improving visual presentation of
structures within complex three-dimensional data such as computed
tomography (CT) data.

CT scanning allows insight into different species, materials, or bod-
ies. One of the most important application areas is medical diagnostic
imaging. Software for medical workstations in general include the
broadest spectrum of functionality for handling volumetric CT data
sets. This includes visualization, image processing, measurements, or
(semi-)automatic diagnosis estimation. Medical workstations, how-
ever, are designed mostly for visual analysis in diagnostic scenarios,
rather than for presentation purposes. Increasingly the topic of visual
presentations is becoming important in the communication between
medical experts or between the medical staff and the patient. There-
fore functionality for presentation purposes will become more impor-
tant for medical workstations in the future.

Current volume visualization systems require a lot of expertise from
the user. For example many widgets to design a suitable transfer func-
tion (mapping tissue density to color and opacity values) are not in-
tuitive for the inexperienced user. Our work is motivated by the fact
that currently none of the commercially or publicly available visual-
ization systems allows the user high-level interactions such as ”Show
me this interesting part of the volumetric data set and then show me the
next interesting part.” Our framework allows an automatic focus of at-
tention on interesting objects. The user’s only required (not limited to)
interaction is to select an object of interest from a set of pre-segmented
objects. The framework smoothly navigates the view to clearly see the
characteristics of the focus object. Additionally, the focus object is vi-
sually emphasized for easy discrimination from the context. Example
images that illustrate focus of attention for insight into a human hand
data and a human torso data are shown in Figures 1 and 2.

• I. Viola and M. E. Gröller are with Institute of Computer Graphics and
Algorithms, Vienna University of Technology, Austria. Viola is at the time
of publication affiliated with University of Bergen, Norway.
E-mail: {viola | meister}@cg.tuwien.ac.at.

• M. Feixas and M. Sbert are with Institute of Informatics and Applications,
University of Girona, Spain.
E-mail: {feixas | mateu}@ima.udg.es.

Manuscript received 31 March 2006; accepted 1 August 2006; posted online 6
November 2006.
For information on obtaining reprints of this article, please send e-mail to:
tvcg@computer.org.

Fig. 1. Visual inspection of different parts within a human hand data.

The main contribution of the paper is a concept of focus of atten-
tion for interactive volume visualization. A characteristic viewpoint is
selected in combination with a visually pleasing discrimination of the
focus from the context information. By changing the object of interest,
both viewpoint settings and visual parameters are smoothly modified
to put emphasis on the newly selected object of interest. The second
contribution is the introduction of an information-theoretic framework
for characteristic viewpoint estimation in volumetric data sets with
pre-segmented objects. Both frameworks, i.e., the interactive focusing
approach and the identification of characteristic viewpoints, are con-
trolled by an intuitive importance distribution among structures within
the volumetric data.

The paper is organized as follows: Section 2 describes previous
work related to importance-driven focus of attention. Section 3 de-
scribes the framework for focusing. Technical details of obtaining
characteristic viewpoints are discussed in Section 4. Interaction as-
pects of focusing are presented in Section 5. Implementation issues
and performance are discussed in Section 6. We draw conclusions and
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Fig. 2. Focus of attention applied to the visual inspection of organs inside the human torso.

summarize the paper in Section 7. Finally in Section 8 some future
work is shortly mentioned.

2 RELATED WORK

Focus of attention has often been used in visualization to catch the
user’s attention. It has many different occurrences. We will first review
relevant previous work in the area of focus+context visualization and
user interaction. The second part of this section reviews recent work
on optimal viewpoint estimation.

The depth of field effect is a focus of attention technique from pho-
tography that inspired Kosara et al. [6] to propose a semantic depth of
field (SDOF). In their work they have shown that the degree of sharp-
ness determines the speed of drawing human attention in otherwise
blurry environments. They have applied their technique in various
fields of information visualization.

A focus+context method for displaying volumetric data has been
proposed in our previous work on importance-driven volume visual-
ization [15]. The importance classification has been introduced for
specifying view-dependent visual representations to reveal occluded
structures. This is in the spirit of cut-away views and ghosted views
known from traditional illustrations.

Several focus+context techniques have been included into Vol-
umeShop, a publicly available interactive volume visualization system
from our group [2]. The functionality of VolumeShop is intended to
provide a tool for presenting and communicating the data being visu-
alized. Similarly to the fan feature in VolumeShop, Tearum et al. [10]
present contextual super-resolution close-ups from illustration applied
to medical volume visualization.

Another publicly available visualization system including function-
ality for visual presentation and communication has been proposed by
Svahkine et al. [9]. An interesting aspect incorporated in their sys-
tem is the level of expertise of the user. This has two implications
for the design of the system. First, the user interface and the widgets
are customized according to the user-expertise. A non-expert user has
a very simple user interface allowing limited flexibility, whereas an
expert has much higher flexibility with advanced tools such as a trans-
fer function editor. Second, the level of user expertise implies also
different visualization results. An easy to understand visualization is
targeted to a non-expert user and a more direct visualization is targeted
to the expert.

Design of camera path is a part of visual presentation. A recent
technique on camera motion for the design review of polygonal models
has been proposed by Burtnyk et al. [3]. The aim of their ShowMotion
system is visually pleasing camera paths inspired by cinematographic
effects. Camera paths are reduced to high-quality motions only, leav-
ing out transitions from one feature to another which are replaced by
fade-out and fade-in operations.

Good viewpoint selection is crucial for an effective focus of atten-
tion. Viewpoint selection has already been applied to several domains
in computer graphics, examples include image-based modeling [14],

volume visualization [1, 11], or mesh saliency [7]. Different measures
for viewpoint evaluation have been used in these fields.

Vázquez et al. [13] have introduced the viewpoint entropy (VE) as
a measure for viewpoint quality evaluation. This measure has been
designed primarily for polygonal data, where the best viewpoint is de-
fined as the one that has maximum entropy. Taking into account the
background information, this technique may be used for indoor and
outdoor scenes as well. VE, based on the Shannon entropy [4], has
been defined as

Hv = −
Np

∑
i=0

ai

at
log

ai

at
, (1)

where Np is the number of polygons of the scene, ai is the projected
area of polygon i over the sphere of directions centered at viewpoint v,

a0 represents the projected area of the background, and at = ∑Np

i=0 ai is
the total area of the sphere. The maximum entropy is obtained when
a certain viewpoint can see all the polygons with the same projected
area ai. VE for polygonal data has been recently extended to volumet-
ric scalar data [1], by substituting the area visibility distribution by the
the distribution obtained from the quotient between the voxel visibil-
ity and the voxel importance (noteworthiness factor). This work has
additionally suggested information-theoretic measures for clustering
views according to similarity using the Jensen-Shannon divergence.
They also suggested an optimal viewpoint estimation scheme for time-
varying data.

It has been shown recently by Sbert et al. [8] that VE is very sen-
sitive to triangulation. Thus, the maximum entropy is achieved by the
viewpoint that sees areas with a very fine triangulation. They pro-
posed a new viewpoint-quality measure for polygonal data based on
the Kullback-Leibler (KL) distance [4] (Equation 6). The viewpoint
KL distance KLv has been defined as the distance between the normal-
ized distribution of projected areas and the normalized distribution of
the actual areas:

KLv =
Np

∑
i=1

ai

at
log

ai
at

Ai
AT

, (2)

where Ai is the actual area of polygon i and AT = ∑Np

i=1 Ai is the total
area of the scene or object. In this case, the background is not taken
into account. The minimum value zero would be obtained when the
normalized distribution of the projected areas is equal to the normal-
ized distribution of the actual areas. In this framework, the best-quality
views correspond to views with minimal KL distance. One drawback
of this measure is that many non-visible or poorly visible polygons in
a model can distort the quality of the measure.

3 IMPORTANCE-DRIVEN FOCUSING

Before going into technical details of our work we would like to focus
the reader’s attention on several considerations we have made during
designing our framework. To get a clear high-level overview on the
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framework functionality, we briefly present the processing framework.
Technical details follow in Sections 4 and 5.

3.1 Framework Design Considerations

In our framework we consider two different aspects of focusing:
Focus discrimination: Focus of attention is a visual discrimination

of interesting objects from other elements in the scene. It is realized
through a visual emphasis of the object of interest while other objects
presented as context are suppressed. In general a discrimination of the
focus from the context can be achieved by different levels of sparse-
ness in their visual representation [15]. The focus is represented very
densely while the context gets a more sparse visual representation.
Levels of sparseness can be designed in many ways. In photography
for example, a very effective technique for object discrimination is the
sharpness of the object of interest. Very sharp objects are automati-
cally perceived as being in focus, more blurry objects are contextual
information. Levels of sparseness are in this case different sharpness
levels. In our framework we use opacity, color brightness, and satura-
tion to discriminate the most interesting objects from the rest.

Characteristic view: In addition to visual discrimination, objects
in focus have to be shown from a good and characteristic view where
most of the focus structures are perceivable. The most interesting ob-
ject must not be occluded by less relevant parts. If possible the focus
should be in front of other features. In case that the feature of interest
is always occluded by other features, cut-away views or other concepts
from illustration should be included into the visualization. In this case
it is important that the cut-away region does not entirely remove other
interesting objects. If possible, only the least relevant objects are cut
away. Furthermore a proper orientation of the up-vector of the view-
point and a proper positioning of the focus are important to consider in
the viewpoint specification. This helps to adhere to aesthetical criteria
of composition such as the rule of thirds [5]. All mentioned aspects
indicate that a proper viewpoint setting is important for the focus of
attention.

3.2 Focus of Attention Framework

Our previous work [15] used an explicit importance classification for
focus+context visualization inspired by techniques known from tradi-
tional illustration. In the following we give an overview how to use
importance classification concept for automatic focusing at objects of
interest. The entire framework is shown in Figure 3. The central ele-
ment is the importance distribution of objects. It serves as a control-
ling mechanism for both parts, i.e., for the characteristic viewpoint
estimation which is done in a pre-processing step as well as interac-
tive focus of attention.

Finding a viewpoint where the characteristics of a specific feature
are clearly visible naturally requires the visibility estimation of the
feature under specific viewing settings. In our case, i.e., for objects
within the volumetric data set, this process is rather time-consuming
as it requires ray casting of the whole data set from various viewpoints.
Computing the visibility of features on-the-fly during interaction will
strongly limit interaction possibilities. The visibility of features de-
pends on their visual representation. For applications where a frequent
change of visual representations is not relevant, the visibility estima-
tion can be easily treated as a pre-processing step, which is executed
only once.

In our focus of attention framework we compute the visibility of an
object as its contribution on the finally rendered image. This compu-
tation is based on the opacity contribution of each voxel belonging to
the object. Additionally two weights influence the visibility of an ob-
ject, i.e., image-space weight and object-space weight. Image-space
weight penalizes the visibility of objects when they are located outside
the image center. Object-space weight assigns higher visibility to ob-
jects which are close to the viewing plane and penalizes those that are
more far away.

Object visibility is then mapped to a conditional probability of the
object for a given viewpoint. These values are used for computa-
tion of good viewpoints for a given object. We use for this a novel
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Fig. 3. Focus of attention framework: First the characteristic viewpoints
for each feature are identified in a pre-processing step. During the user
interaction viewpoint settings and visual representations are changed to
bring the object of interest into focus. Both stages of the framework are
controlled by the importance distribution of objects.

information-theoretic framework for optimal viewpoint estima-
tion combined with object importance information as described in de-
tail in Section 4.

With selecting visual representations of segmented objects and by
identifying representative viewpoints, the crucial information to per-
form interactive focus of attention is available. The importance dis-
tribution is in the interactive part a direct mapping of user’s interest.
Importance is directly mapped to focus discrimination and level of
ghosting. The viewpoint transformation is also controlled by im-
portance distribution smoothly changing to characteristic viewpoints
obtained in the pre-processing step. To preserve natural orientations
of the viewpoints the framework includes the information about the
up-vector of the volume (e.g., in the case of the human anatomy, up-
vector is pointing upwards relative to the feet). A more detailed dis-
cussion on the interactive focus of attention is given later in Section 5.

4 CHARACTERISTIC VIEWPOINT ESTIMATION

In this section, we describe our approach for selecting a characteris-
tic viewpoint for a particular object. This information is then used in
the interactive focus of attention. First, we determine the visibility of
structures within the volumetric data considering their visual repre-
sentations. Then we use the visibility as input to the new information-
theoretic framework. This framework integrates per-object importance
classification, which allows to estimate characteristic viewpoints for
an object within the volume.
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4.1 Visibility Estimation

The first step for a viewpoint evaluation is the estimation of per-object
visibility. We use a simple scheme for visibility evaluation, taking into
account the opacity contribution of voxels on the rendered image. The
evaluation of the visibility is done in a ray-casting step. For each sam-
ple i along a ray r we evaluate its visibility v(r, i) = v(r, i− 1)α(r, i),
where α(r, i) is the resampled opacity value at the given sample po-
sition i. We implement nearest neighbor and linear interpolation re-
sampling schemes. The visibility of a voxel is given as the sum of
visibilities of all resampled points the voxel is contributing to in the
resampling step. In case of nearest neighbor interpolation we simply
sum the ray sample visibilities belonging to this voxel. In case of linear
interpolation, we perform a linear distribution of the ray sample vis-
ibility among all eight surrounding voxels. The quality difference of
the visibility estimation between nearest neighbor and linear interpo-
lation, however, is rather low. The performance difference on the other
hand is significant, so the nearest neighbor resampling is preferred in
our framework.

The sum of voxel visibilities belonging to a particular feature, es-
timates the visibility of this feature. We are using non-binary object
classifications and a particular voxel may contribute to a number of
different features simultaneously. The voxel visibility is simply mul-
tiplied by a factor that defines how much the voxel contributes to a
particular object.

In our focus of attention framework, we also change the visual rep-
resentation of the object of interest. This means that the visual rep-
resentation is not constant during the time of interaction. This has to
be taken into account while computing visibilities. Therefore we com-
pute the visibility for each active object, i.e., object in focus. This
means, for each viewpoint we get (n+1) different visibility values for
n objects. Each object is set once as active object plus once the visibil-
ity is computed with no selected active object. When we search for the
characteristic viewpoint of a particular object, we use those visibilities
where this object has been the active object.

One problem that arises when computing the visibility of objects, is
that some features may be completely occluded by other features. This
is caused by very dense visual settings. This means that there is no
viewpoint from which the feature is clearly visible, or all viewpoints
are equally good or bad. In order to deal with this problem, we have
optionally included cut-away views in the visibility estimation. Here
the active object is visible from all viewpoints as the volume region in
front of this object is not visible at all.

The above described visibility evaluation does not consider the lo-
cation of features in image and object space. To draw attention to a
feature, it is important that it is located close to the center of the im-
age. Therefore we give more prominence to rays in the center of the
image. Each ray’s contribution to the visibility of objects and back-
ground is scaled by an image-space weight. This weight is largest in
the center of the image and is decreasing with the distance from the
center.

Another weight that contributes to the visibility estimation takes
the distance of an object to the viewer into account. This object-space
weight is a high value when the feature is close to the viewing plane
and low when it is farther away. This weight is especially important
when cut-away views in the visibility estimation are enabled. The
motivation is to penalize views that cut away larger parts of volume to
see the active object.

The overall concept of characteristic viewpoint estimation driven by
an importance distribution is illustrated in the upper stage in Figure 3.
The importance distribution and the visibility of each object for the
given visual representations are input parameters of the information-
theoretic framework. This framework will be described in detail in the
next section.

4.2 Information-Theoretic Framework for Optimal View-
point Estimation

After the visibility of each object under different visual settings and
viewpoints has been computed, the characteristic viewpoint estima-
tion can be performed. Our viewpoint selection approach is using the

mutual information of the information channel defined in terms of vis-
ibility between a set of viewpoints and the objects of a volumetric data
set. This new measure shows a better behavior and robustness than
the previous viewpoint entropy [13]. An information channel between
two random variables (input and output) is characterized by a proba-
bility transition matrix which determines the output distribution given
the input. For more information on information-theoretic measures,
please refer to Cover and Thomas [4].

Our framework works well for volumetric objects as segmented vol-
ume regions. Taking a voxel as a basic object element would lead to
very high memory consumption. This will also be the case using pre-
viously suggested viewpoint quality measures. Therefore our basic
element is an object (a feature) instead of a voxel.

The framework naturally integrates per-object importance classifi-
cation. By changing the importance distribution among objects, the
results of viewpoint evaluation also change to have a characteristic
view on the feature of highest importance. Setting the importance to
be equal for all objects, characteristic views for the entire volume are
achieved.

We formalize our viewpoint selection framework defining a channel
V → O between two random variables, which represent, respectively,
a set of viewpoints V and a set of objects O of a volumetric data set.
Viewpoints will be indexed by v and objects by o. The marginal prob-
ability distribution of V is given by p(v) = 1

Nv
, where Nv is the num-

ber of viewpoints, i.e., we assign the same probability to each view-
point. The conditional (or transition) probabilities p(o|v) are given
by the normalized visibility of each object from each viewpoint, i.e.,
∑o p(o|v) = 1. From these data, the marginal probability distribution
of O is given by

p(o) = ∑
v

p(v)p(o|v) =
1

Nv
∑
v

p(o|v), (3)

which is the average visibility of each object obtained from the set of
viewpoints.

The mutual information [4] between V and O expresses the degree
of dependence or correlation between the set of viewpoints and the
data set, and is defined as

I(V,O) = ∑
v

p(v)∑
o

p(o|v) log
p(o|v)
p(o)

=
1

Nv
∑
v

I(v,O), (4)

where we define

I(v,O) = ∑
o

p(o|v) log
p(o|v)
p(o)

(5)

as the viewpoint mutual information (VMI). VMI represents the de-
gree of dependence between viewpoint v and the set of objects. In our
framework, the quality of a viewpoint is given by I(v,O) and the best
viewpoint is defined as the one that has minimum mutual information.
High values of the measure mean a high dependence between view-
point v and the dataset, indicating a highly coupled or dependent view
between, for instance, the viewpoint and a small number of objects
with low average visibility. On the other hand, low values correspond
to more representative or independent views, showing the maximum
possible number of objects in a balanced way. Thus, we will select the
viewpoints that minimally contribute to the mutual information of the
channel.

It is worth observing that VMI (Equation 5) can be expressed as
a Kullback-Leibler distance [4]. The Kullback-Leibler (KL) distance
between two probability distributions p and q defined over the same
set is given by

KL(p|q) = ∑
x

p(x) log
p(x)
q(x)

, (6)

and is a divergence measure between the true probability distribution
p and the target probability distribution q. Thus, in Equation 5, p(o) is
the target distribution and plays the role of the optimal distribution as
we want that p(o|v) comes close to p(o) to obtain the best views. On
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the other hand, this role agrees with intuition since p(o) is the average
visibility of object o over all viewpoints, i.e., the mixed distribution
of all views, and we can think of p(o) as representing, with a single
distribution, the knowledge about the scene. If we look for a good set
of views within the set of viewpoints (in particular for the single best
one), we will obtain the most representative set by selecting the views
such that their mixing minimizes the distance to the target distribution.
That is, this mixing will provide us with a balanced view of the dataset.

In addition, one important advantage of VMI over VE is its ro-
bustness to deal with any type of discretization or resolution of the
dataset. It has been shown for polygonal data that the VE value is
very sensitive to the discretization of the objects [8]. Analogously, a
volumetric object with an extremely refined mesh will attract the atten-
tion of the measure. On the other hand, VMI will be near insensitive
to changes in the voxel resolution. The behavior of both measures
with respect to discretization can be deduced from the mathematical
analysis of VE and VMI. For instance let’s assume that a regular ob-
ject o of the dataset is subdivided into two equal parts o1 and o2 such
that p(o1|v) = p(o2|v), p(o1) = p(o2), p(o|v) = p(o1|v)+ p(o2|v) and
p(o) = p(o1)+ p(o2). Assuming that only the term referred to object
o can change in the formulas for VE and VMI, we analyze its variation
after subdivision. Thus, for VE, given by Hv = −∑o p(o|v) log p(o|v)
using our notation, we obtain that

−p(o|v) log p(o|v) < −p(o1|v) log p(o1|v)− p(o2|v) log p(o2|v)
= p(o|v)− p(o|v) log p(o|v).

Therefore, VE increases with a value p(o|v) after the subdivision. On
the other hand, for VMI,

p(o|v) log
p(o|v)
p(o)

= p(o1|v) log
p(o1|v)
p(o1)

+ p(o2|v) log
p(o2|v)
p(o2)

.

Thus, VMI remains invariant to this subdivision. Hence, if we com-
pare both measures for a setting with different discretizations, mutual
information will give similar results and VE will show an erratic be-
havior. For example, if we consider a fly eye either as a grouping of
objects (facets) or simply a unique object, viewpoint entropy can se-
lect completely different views, while VMI will be almost insensitive
to the change of model.

4.3 Incorporating the Importance Distribution
Due to the fact that VMI represents the distance between the projected
visibility distribution p(o|v) from viewpoint v and the target distribu-
tion p(o), VMI can be easily generalized to incorporate importance.

Adding importance to our scheme means simply modifying the tar-
get function. The ideal viewpoint would be now the one viewing every
object proportional to the average visibility multiplied by importance.
After incorporating importance, the viewpoint mutual information is
given by

I′(v,O) = ∑
o

p(o|v) log
p(o|v)
p′(o)

, (7)

where

p′(o) =
p(o)i(o)

∑o p(o)i(o)
(8)

and i(o) is the importance of object o.
The importance distribution among the volumetric objects is a di-

rect mapping of the user’s interest to a particular part of the volumetric
data. Therefore it is very important that the scheme for obtaining the
characteristic viewpoint of the object of interest is robust with respect
to the importance distribution. The previously used scheme using the
VE measure [1], where the probabilities are given by the normaliza-
tion of the voxel visibility divided by the voxel importance, turned
out to be not robust enough for our aims. On the other hand using
the VMI measure for obtaining characteristic viewpoints results into
much more stable results. Figure 4 shows an extreme example of un-
wanted VE behavior. The test data set consists of a cube divided into
two halves, where each half is one object (depicted by dark red and

green colors). The importance is distributed to objects in the follow-
ing way: the object of interest (active object) has importance value
100, the inactive object has importance value 1 and the background
has importance value 0.1. Visibility has been computed for 6 views,
i.e., from each orthogonal view. From these viewpoints most charac-
teristic viewpoints have been computed when no object is active, the
dark red half is the active object, and the green half is the active ob-
ject. The upper row shows the characteristic viewpoints estimated by
VE, the bottom row by VMI. The images show that after incorporating
importance, VE has in fact selected the wrong viewpoints as the best
ones, while VMI performed correctly.

(a) (b) (c)

Fig. 4. Behavior of viewpoint entropy (upper row) vs. viewpoint mutual
information (bottom row) tested on a cube data set with two halves with
different importance. Characteristic viewpoints when (a) no active object
selected, (b) red half is active (high importance assigned to dark red
object), and (c) green half is active (high importance assigned to green
object)).

While VMI takes into account the degree of visibility of the objects
seen with respect to all the knowledge about visibilities and impor-
tances of all the objects, VE only takes into account the visibility and
importance of the objects seen, without any other reference. Thus,
as it can be seen in our example, one object (background) with high
visibility and very low importance can distort completely the desired
results.

On the other hand, while the maximization of VE tries to bal-
ance the probabilities obtained from the normalization of the quotients
p(o|v)/i(o) of the objects seen [1], the minimization of VMI tries that
the visibility of the objects comes close to the normalized product
p(o)i(o). For instance, given a view, if we scale the importance of
all the objects in the view, VE will not change. This means that two
different views with equal visibility distribution and different impor-
tance will have the same VE. On the contrary, in this case VMI will
select the view where the most important objects are visible.

4.4 Obtaining Characteristic Viewpoints

Equation 7 defines the VMI with importance classification. This is
computed for each viewpoint and for each active object separately (as
they have different visual representations, which implies different visi-
bilities). To obtain a set of characteristic views for a given object o, we
compute the conditional probabilities of all objects for a given view-
point. The conditional probability p(o|v) is equal to the normalized
visibility, i.e., the visibility of all objects per viewpoint are equal to 1
as described in Section 4.2.

Furthermore we have to compute the marginal probability
p(o) from Equation 3. To compute p′(o) we first com-
pute a dot product between the marginal probability vector
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(p(o0), p(o1), p(o2), ..., p(om−1), p(om)) and the importance distribu-
tion vector (i(o0), i(o1), i(o2), ..., i(om−1), i(om)) where m is the num-
ber of objects and o0 is the background volume. After the sum in the
denominator of Equation 8 is computed, all information is available
and we can compute the VMI for viewpoint v.

The VMI is computed for every viewpoint and the set of viewpoints
with the smallest mutual information are selected. These computations
give us good viewpoints for a particular active object. To compute
good viewpoints for another object, we have to take another set of
visibilities where the visual emphasis is on the respective object. All
values necessary for the viewpoint mutual information can be stored
in a set of 2D schemes as depicted in Figure 3.

5 INTERACTIVE FOCUS OF ATTENTION

How to obtain characteristic viewpoints has been described in the pre-
vious section. Let’s assume we have identified a set of most charac-
teristic viewpoints per object under the given sparse and dense visual
representations. Now we will describe in detail how the focus of at-
tention can be used for the interactive visual inspection of a feature
within the volumetric data. The interactive stage of our framework is
depicted in the lower part in Figure 3.

The general idea is to use the importance distribution as a steering
parameter for the focus of attention. We specify a high importance
value for the active object o1 (e.g., 100.0). The other objects are as-
signed a low importance value (e.g., 1.0) and the lowest value is as-
signed to the background (e.g., 0.1). Such a distribution defines that
the viewpoint is located at the characteristic viewpoint of the active
object, which has a dense representation while other objects and back-
ground are represented more sparsely.

By selecting another object (o2) to become the active object on the
user’s request, the importance of the previously selected active object
(o1) starts decreasing to the value of inactive objects (1.0). This causes
that the visual representation of object o1 is becoming more sparse and
the viewpoint is moving away from the characteristic viewpoint of o1
towards the characteristic view of the entire scene (contextual view).

When the low importance value of object o1 is achieved, all objects
have equal importance. This means no object is visually emphasized
and the viewpoint is set to a contextual view. This view provides the
context information of all structures so the user does not lose his ori-
entation within the volume. This way of presenting objects is in the
spirit of the navigation on large 2D maps proposed by van Wijk and
Nuij [12].

Afterwards the importance of the newly selected active object o2
is increasing to the maximal value (100.0). The change in the impor-
tance distribution gives the visual prominence to the object o2 and the
viewpoint is changing to the characteristic viewpoint of o2.

This is the basic idea of our interactive focusing approach for
guided navigation through objects in volumetric data. We describe
the details on viewpoint transformation and changes visual represen-
tations in the following subsections separately.

5.1 Viewpoint Transformation

For each object we calculate in the pre-processing step one characteris-
tic viewpoint, and several contextual characteristic viewpoints for the
entire scene. All these viewpoints are located on a bounding sphere
around the volumetric data set. When selecting a new active object
(o2) by the user, the importance distribution starts changing which im-
plies the viewpoint position change.

The viewpoint is changing along the path on the bounding sphere.
This path starts at characteristic viewpoint of previously active object
o1 (v1), visits one contextual characteristic viewpoint (vc), and ends at
the characteristic viewpoint of o2 (v2). Thus viewpoint change con-
siders three pre-selected viewpoints. We calculate the path as a Beziér
curve defined by viewpoint positions (v1, vc, and v2) as three control
points. This means that the contextual view on the whole volume is not
visited exactly, it is approximated by similar views that also satisfy the
goal of providing context. The Beziér curve among three viewpoints
is depicted in Figure 5.

o1 o2

o3

vc

v1 v2

Fig. 5. Change between two characteristic viewpoints of different ob-
jects (v1 for o1 and v2 for o2). The contextual viewpoint vc is nearly
visited and is approximated by the Beziér curve.

As we define several characteristic contextual viewpoints (vci), we
have to define which one will be selected as vc. One possibility can be
to select that contextual viewpoint vci where the viewpoint path will
be minimal. This can be done in the following way: For each vci we
compute the angle φ1 between the normal vector of viewpoint v1 and
viewpoint vci and angle φ2 between the normal vector of vci and v2.
The contextual viewpoint vci with the smallest angle sum φ1 + φ2 is
selected as vc. This will guarantee that the overall viewpoint path is
the shortest.

The position of the viewpoint always has to be located on the
bounding sphere. To obtain the set of intermediate viewpoint posi-
tions, the Beziér curve is sampled by equally distant samples. These
samples are then projected onto the bounding sphere. These projected
samples define the centers of the intermediate viewpoints.

This has one favorable implication: The viewpoint change starts
slowly, has the biggest angle difference (i.e., viewpoint change speed)
in the middle between the characteristic view v1 and vc, where the
viewpoint transformation slightly slows down to dedicate a little time
to the contextual view. Then it speeds up again and slows down before
reaching the characteristic viewpoint v2. Entire transformation results
into visually pleasing viewpoint changes.

This implication is shown in Figure 6. For the sake of clarity the
viewpoint change difference is illustrated only by two viewpoints v1
and v2 where the viewpoint path is a line projected on the sphere. In the
middle of the viewpoint path the change is the fastest, while close to
more interesting viewpoints v1 and v2 the viewpoint change is slower.

v1 v2

o1 o2

o3

Fig. 6. The viewpoint path is calculated as a difference between two
viewpoint positions. The path is then normalized onto the bounding
sphere, which smooth acceleration and de-acceleration in viewpoint
change.

An important consideration in the viewpoint setting with respect to
a visually pleasing focusing, is the orientation of the viewpoint up-
vector. In our implementation we set the viewpoint up-vector to point
towards the up-vector of the volume. The up-vector of the volume
is defined for each dataset before the visual inspection. This is done
together with all other preprocessing steps: defining objects by seg-
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mentation, defining visual representations, and estimating good view-
points. If the viewpoint is located at the poles, i.e., the viewpoint nor-
mal vector is parallel to the volume up-vector, we select another vector
to be the viewpoint up-vector. In our implementation we use the vol-
ume front-vector with inverse orientation so we look at the volume
from top-front.

Apart from the guided navigation through interesting objects within
the data, our system allows free user manipulation with the viewpoint
to see the inspected object from various viewpoints. User has to enable
the free manipulation mode. When the free manipulation mode is later
disabled by the user, the viewpoint smoothly changes to last selected
object of interest.

5.2 Change in Visual Representation

A characteristic view is one important part of focus of attention. How-
ever without emphasis through the selected visual representation, the
focus object is still not discriminated from the context objects. There-
fore in our framework changes in importance distribution also change
the visual appearance of objects. A visual representation basically
changes in a similar way as the viewpoint. In this case we do not need
to calculate a path. We select the appropriate level of sparseness in
the visual representation. In our implementation we define the visual
representations of inactive and active objects before the visibility cal-
culation. These visual representations can be linearly interpolated for
example. In our focusing framework we use a discontinuous change
in the visual representation as this abrupt change attracts an observer’s
attention much stronger. While the viewpoint moves from view v1
(showing the previously active object o1) towards the contextual view
vc (the importance of the previous active object is decreasing), the
previous active object is still visually emphasized. After reaching the
context viewpoint, the visual representation of the previously active
object is suppressed and the new active object o2 is visually empha-
sized (from the moment when importance of o2 starts increasing).

In addition to changes in the visual representation, we optionally
incorporate cut-away views to give a clear view at internal objects.
The level of ghosting in the cut-away region in front of the interesting
feature is also driven by importance changes. In this case we do not
employ abrupt changes, but the level of ghosting changes smoothly.
This means the ghosting level (i.e., opacity in the cut-away region) is
increasing with decreasing importance of the previously active object
o1 and is decreasing with increasing importance of the new active ob-
ject o2. When the characteristic view is reached, the ghosting level is
minimal, i.e., features in front of the active object are in the cut-away
region completely transparent.

We also optionally include additional information into this static
view (i.e., when the importance distribution is not changing) by
blending-in textual annotations. These are represented in form of over-
lay labels that indicate the name of the selected object. In case when
all objects are labelled the label of the active object is visually more
prominent (see Figure 1).

6 RESULTS

We have integrated the focus of attention functionality as a plugin
into VolumeShop [2]. This system allows easy prototyping with the
possibility of using a lot of existing functionality. We have extended
the information about the data set, which is stored in an XML struc-
ture, by information on the volume up-vector and on the volume front-
vector. After the viewpoint estimation, a characteristic viewpoint is
saved for each object in the XML structure as well as the set of global
contextual views. Visibility computation for each object is the most
time-consuming part of the framework and takes approximately a few
minutes. Visibility computation through the ray-casting has to be per-
formed for a large number of viewpoints. Currently our implemen-
tation takes about 15 seconds per viewpoint for 64× 64× 64 data set
with two objects plus background on an AMD 64 X2 Dual Core 4800+
in a single thread. This time consumption can be shortened by a more
efficient implementation. As this is a pre-processing step that is con-
siderably shorter than object specification by segmentation or setting-
up proper visual representations, this is not a real issue. During the

user interaction the performance is approximately 20 to 5 frames per
second depending on the data size, and graphics hardware. The graph-
ics hardware has to support the pixel shader PS 3.0 specification. Ad-
ditional viewpoint location computations as well as importance-driven
modifications of visual representations do not take any noticeable time
and the performance is equal to standard multi-volume rendering im-
plemented in VolumeShop [2].

Focus of attention is shown on three different data sets. The hu-
man hand and torso (Figures 1 and 2) show objects that are inside the
data set. In this case the visibility computation used cut-away views
to identify the best visibility. Interesting objects are shown from their
characteristic viewpoints. More prominent visual representation dis-
criminates the interesting feature from other parts of the data. The
visualization is additionally extended by labels showing the names of
respective emphasized parts.

In case of the stag beetle data set (Figure 7), only outer parts have
been selected so the option for cut-away visibility calculation was not
enabled. In this figure sample images have been taken from a view-
point path that re-focuses from the thorax to the legs. Between the
fourth and fifth image the contextual viewpoint has been reached and
the focus is switched to the legs.

7 SUMMARY AND CONCLUSIONS

In this paper we have proposed the concept for importance-driven fo-
cus of attention. We have discussed the necessary pre-processing steps
before a visual inspection puts the focus of attention on interesting ob-
jects. One of these steps is localization of viewpoints that show char-
acteristics of an object in the best way. We use a new method for
viewpoint selection for volume data using viewpoint mutual informa-
tion that works very good for segmented volumetric data classified by
importance.

We have shown possibilities how to realize focus of attention for
a visual inspection of volumetric data with added information such
as varying visual representations, characteristic viewpoints for objects
and the entire volume, up-vector of the volume.

We have discussed aspects of a visually pleasing re-focusing from
one object of interest to another. This includes the selection of view-
points, design of a path for the viewpoint and also changes in the vi-
sual representation. Inspection of pre-selected structures gives a good
overview on the information content of the underlying data.

8 FUTURE WORK

This section presents some improvements and extensions that can be
incorporated into the presented framework. The current performance
of the proof of concept implementation for visibility estimation is quite
time consuming. We expect to improve the performance considerably
by porting the computation towards GPU.

The viewpoint path is designed by connecting characteristic views
of objects and a global characteristic view. This means that the
information-theoretic framework does not have an entire control over
the path design. With a fast visibility estimation scheme it will be
interesting to compute the path design directly using the viewpoint
mutual information measure.

At the moment the viewpoint change is realized on the bounding
sphere of the entire volume data. To see the inspected object in a more
detail, an automatic zooming strategy at the objects of interest can be
considered. During re-focusing from one object a zoom-out will be
performed and again zoom-in at the newly selected object of interest.

The quality of a viewpoint is hard to justify. In fact only a user
study could be used for viewpoint quality evaluation. An interesting
point can be to let users determine their own preferred viewpoints.
This information can be used as input to the existing IT framework
as marginal probability of the viewpoint which is currently set to a
constant value for all viewpoints.
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Fig. 7. Stag beetle data set: re-focusing from the thorax to the legs.
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[2] S. Bruckner and M. E. Gröller. VolumeShop: An interactive system
for direct volume illustration. In Proceedings of IEEE Visualization’05,
pages 671–678, 2005. http://www.cg.tuwien.ac.at/volumeshop/.

[3] N. Burtnyk, A. Khan, G. Fitzmaurice, and G. Kurtenbach. ShowMotion:
camera motion based 3D design review. In Proceedings of the Interactive
3D Graphics and Games Symposium, pages 167–174, 2006.

[4] T. Cover and J. Thomas. Elements of Information Theory. Wiley Series
in Telecommunications, 1991.

[5] B. Gooch, E. Reinhard, C. Moulding, and P. Shirley. Artistic composi-
tion for image creation. In Proceedings of Eurographics Symposium on
Rendering ’01, pages 83–88, 2001.

[6] R. Kosara, S. Miksch, and H. Hauser. Semantic depth of field. In Pro-
ceedings of IEEE InfoVis ’01, pages 97–104, 2001.

[7] C. H. Lee, A. Varshney, and D. Jacobs. Mesh saliency. In Proceedings of
ACM SIGGRAPH ’05, pages 659–666, 2005.

[8] M. Sbert, D. Plemenos, M. Feixas, and F. González. Viewpoint quality:
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