
Scene understanding by apparent contour extraction
Nancy DANDACHY, Dimitri PLEMENOS, Bachar EL HASSAN*

University of Limoges, XLIM laboratory, 83, rue d’Isle, 87000 Limoges (France)
*Lebanese University, Faculty of Engineering, El Kobbeh, Tripoli, Lebanon

dandachy@msi.unilim.fr, plemenos@unilim.fr, elhassan@ul.edu.lb

Abstract

In this paper, we present techniques allowing visual understanding of scenes which are difficult to understand
from a realistic rendering due to reflection and refraction effects. To do this, an apparent contour extraction
technique is used, based on scene knowledge and using a ray casting algorithm together with a selective
refinement approach. With this technique the real objects of the scene are delimited by their apparent
contours and may be overlaid on the realistic rendering of the scene, making the user able to distinguish
reality from reflection and refraction effects.

Keywords: Scene understanding, Contour extraction, Ray casting, Selective refinement.

1. Introduction

The problem of understanding a scene is currently
a more and more pertinent problem because of the
development of web applications and possibilities,
for a user, to discover new, never seen, scenes on
the net. These scenes are sometimes difficult to
understand for various reasons. One of these
reasons is the use of realistic rendering to get an
image of the scene. Even if it seems paradoxical,
realistic rendering does not always allow
understanding reality. This is the case with scenes
containing lights, mirrors and transparent objects.
In such cases, shadows, reflections and refractions
give the user to see non existing objects and it is
difficult for him (her) to understand what is a real
object and what is illusion.

In this paper, we propose a new approach to face
the problem of understanding scenes containing
lights mirrors and transparent objects. The
proposed method is based on ray casting and
selective refinement improvement, in order to
extract apparent contours of the real objects of the
scene.

 The paper will be organized in the following
manner: In section 2 the main current techniques
allowing easier understanding of 3D scenes will be
presented. A lot of these techniques are based on
automatic computing of a good view or of a good
path for a virtual camera exploring the scene. As
we are going to enhance the visualization by
extracting apparent contours we are going to

extend our research to study the existing methods
in this field which distinguish between image space
algorithms, hybrid algorithms and object space
algorithms. In section 3 the understanding problem
for scenes rendered in realistic manner will be
explained and a method to avoid this problem will
be presented. In section 4 the first results obtained
with the proposed method will be presented and
commented. In section 5 a conclusion on the
pertinence of our method will be made and
possible future work will be considered.

2. Main techniques for scene understanding

The very first works in the area of understanding
virtual worlds were published at the end of 80’s
and the beginning of 90’s. There were very few
works because the computer graphics community
was not convinced that this area was important for
computer graphics. The purpose of these works
was to offer the user a help to understand simple
virtual worlds by computing a good point of view.

2.1 Best view computing for virtual worlds

When the virtual world to understand is simple
enough, a single view of it may be enough to
understand the virtual world. So, it is important to
be able to propose an automatic computation of a
“good” viewpoint.
Kamada and Kawai [KK88] consider a position as
a good point of view if it minimizes the number of
degenerated images of objects when the scene is
projected orthogonally. A degenerated image is an

http://fr.f277.mail.yahoo.com/ym/Compose?To=elhassan@ul.edu.lb
mailto:plemenos@unilim.fr
mailto:dandachy@msi.unilim.fr

image where more than one edges belong to the
same straight line. They have proposed to
minimize the angle between a direction of view
and the normal of the considered plan for a single
face or to minimize the maximum angle deviation
for all the faces of a complex scene.
This technique is very interesting for a wire-frame
display. However, it is not very useful for a more
realistic display. Indeed, this technique does not
take into account visibility of the elements of the
considered scene and a big element of the scene
may hide all the others in the final display.

Plemenos and Benayada [PB96] propose an
iterative method of automatic viewpoint
calculation and create a heuristic that extends the
definition given by Kamada and Kawai. A point is
considered as a good point of view if it gives; in
addition of the minimization of deviation between
a direction of view and normals to the faces, the
most important amount of details. The viewpoint
quality is based on two main geometric criteria:
number of visible polygons and area of the
projected visible part of the scene, it is computed
using the following formula:

r

)v(P

n

1)v(P
)v(P n

1i
i

n

1i i

i

)v(I
∑∑

== +

+

=
(1)

Where:I(V) is the importance of the view point V,
Pi(V) is the projected visible area of the
polygon number i obtained from the point
of view V,
r is the total projected area,
n is the total number of polygons of the
scene.
[a] denotes the smallest integer, greater
than or equal to a.

The process used to determine a good point of
view works as follows:
The scene is placed on the center of the unit sphere
whose surface represents all possible points of
view. The sphere is divided into 8 spherical
triangle (see Fig.1) and the best one will be whose
vertices represent the best quality according to the
formula (1). Finally the best point of view is
computed by recursive subdivision on the best
spherical triangle. (See Fig. 2)

Fig. 1: The sphere of
viewpoint into 8 spherical
triangle

Fig. 2: Recursive
 subdivision of the best
spherical triangle

This method gives generally interesting results.
However, the number of polygons criterion may
produces some drawbacks. To resolve this
problem, Sokolov et al. [SP05], [SP06] propose to
replace the number of polygon criterion by the
criterion of total curvature of the scene which is
given by the equation:

∑∑ ∑
∈∈ α∈α

⋅α−π=
)p(Ff)p(Vv)v(

i

i)f(P2)p(I (2)

Where:
F(p) is the set of polygons visible from the
viewpoint p,
P(f) is the projected area of polygon f,
V(p) is the set of visible vertices of the scene
from p,
α(v) is the set of angles adjacent to the
vertex v.

Equation 2 uses the curvature in a vertex (see Fig.
3), which is the sum of angles adjacent to the
vertex minus 2π.

iα

v

 Fig. 3: Curvature in a vertex

The best viewpoint is computed by using a data
structure, so-called visibility graph, which allows,
to every discrete potential viewpoint on the surface
of the surrounding sphere, the association of the
visual pertinence of view from this viewpoint.
Colin [CC88] proposed a method to compute a
good view for octree models. The viewpoint is
considered to be good if it shows high amount of
voxels. This method computes first the “best”
initial spherical triangle and then the “best”

viewpoint is approximately estimated on the
chosen triangle.
Sbert et al. [SF02] use viewpoint entropy criterion
to evaluate the amount of information captured
from a given point of view which is defined by the
following formula:

∑
=

−=
fN

0i t

i

t

i
p A

ALog
A
A)x(H (3)

Where Nf is the number of faces of the scene, Ai is
the projected area of the face i and At is the total
area covered over the sphere.
The maximum entropy is obtained when a
viewpoint can see all the faces with the same
relative projected area Ai/At. The best viewpoint is
defined as the one that has the maximum entropy.

When we have to understand a complex virtual
world, the knowledge of a single point of view
is not enough to understand it. Computing
more than one point of view is generally not a
satisfactory solution in most cases because the
transition from a point of view to another one
can disconcert the user, especially when the
new point of view is far from the current one.
The best solution, in the case of complex
virtual worlds is to offer an automatic
exploration of the virtual world by a camera
that chooses good points of view and, at the
same time, a path that avoids brusque changes
of direction. Several authors have proposed
methods for online or offline exploration
[PD99, PD00, DG01, VS03, VP03, JP05, JP06,
SP05, SP06].

2.2 Apparent contour extraction techniques

In computer graphics, contour extraction and
rendering has a central role in a growing number of
applications. It is not only used in non
photorealistic rendering for artistic styles and
cartoons, it’s also used for technical illustrations,
architectural design and medical atlases [HZ00], in
medical robotic [OZ06], and for photo realistic
rendering enhancement. It has been used as an
efficient means to calculate shadow volumes
[HZ00], to rapidly create and render soft shadows
on a plane [HE01]. It’s also used to facilitate the
haptic rendering [JC01]. Some authors, [CP98,
JR02] have described the use of silhouettes in
CAD/CAM applications. Systems have also been

built which use silhouettes to aid in modeling and
motion capture tasks [BL01, FP99, and LG00].
More applications and techniques based on line
drawings detection are described in the course
notes 7 of SIGGRAPH 05 [SG05]

Isenberg distinguish in his paper [IS03] between
image space algorithms that only operate on image
buffers, hybrid algorithms that perform
manipulations in object space but yield the
silhouette in an image buffer, and object space
algorithms that perform all calculations in object
space with the resulting silhouette represented by
an analytic description of silhouette edges.

2.2.1 Image space algorithms

 In image space, the easiest way to find significant
lines would be by detecting discontinuities in the
image buffer(s) that result from conventional
rendering and extract them using image processing
methods. This however, doesn’t detect silhouette
since changes in shading and texturing can cause
erroneous edge detection. Saito and Takahachi
[ST90], Decaudin [Dec96], Hertzmann [HA99],
Deussen and Strothotte [DS00], Nienhaus and
Dellner [ND03], extend this method by using the
geometric buffers known as G-Buffers which are
the depth buffer (z-buffer), the normal buffer and
the Id-buffer.
By detecting the 0 discontinuities of the depth map
we can obtain the silhouette. And with the
detection of the 1 discontinuities of the normal map
we can obtain the crease edge. The advantage of
image space algorithms is that they are relatively
simple to implement because they operate with
buffers which can be generated easily with the
existing graphics hardware, can be applied to all
kinds of model and give good results in simple
cases. However, the main disadvantage of image
space algorithms is that they depend on a threshold
that has to be adjusted for each scene. A second
disadvantage of these techniques is that in the case
of complex images they might add undesired
contours or miss some lines because of the
presence of reflections and refractions.

2.2.2 Hybrid algorithms

Rustagi [RP89], Rossignac and Emmerik [RE92]
use hybrid algorithms which are characterized by

operations in object space (translations) that are
followed by rendering the modified polygons in a
more or less ordinary way using a z-buffer. This
usually requires two or more rendering passes.
Raskar and Cohen [RC99], Gooch et al. [GB99],
Raskar [RR01], they generalize this approach in
their work by using traditional z-buffering along
with back-face or front-face culling, respectively.
With hybrid algorithms, the visual appearance of
the generated images tends to be a more stylistic
one.
Similarly to image space algorithms, hybrid
algorithm might fail to face some numerical
problems due to limited z-buffer resolution.

2.2.3 Object space algorithms

The computation of silhouettes in this group of
algorithms, as the name suggests, takes place
entirely in object space. The trivial object space
algorithm is based on the definition of a silhouette
edge. The algorithm consists of two basic steps.
First, it classifies all the mesh’s polygons as front
or back facing, as seen from the camera. Next, the
algorithm examines all model edges and selects
only those that share exactly one front- and one
back-facing polygon. The algorithm must complete
these two steps for every frame.
Buchanan and Sousa [BS00] suggest, to support
this process, the use of a data structure called an
edge buffer where they store two additional bits per
edge, F and B for front and back facing. They
extend later this idea to support border edges and
other feature edges.
This simple algorithm, with or without using the
edge buffer data structure, is guaranteed to find all
silhouette edges in the model. It is easy to
implement and well suited for applications that
only use small models. However, it is
computationally expensive for common hardware-
based rendering systems and the model sizes
typically used with them. It must look at every
face, determine face orientation (using one dot
product per face; for perspective projection it must
recompute the view vector for every face), and
look at every edge. This is a linear method in terms
of the number of edges and faces but too slow for
interactive rendering of reasonably sized models

To speed up the algorithm, Card and Mitchell
[CM02] suggest employing user-programmable
vertex processing hardware (shaders).

Hertzmann and Zorin [HZ00] consider the
silhouette of a free-form surface approximated by a
polygonal mesh. To find this silhouette, they
recompute the normal vectors of the approximated
free-form surface in the vertices of the polygonal
mesh. Using this normal, they compute its dot
product with the respective viewing direction.
Then, for every edge where the sign of the dot
product is different at both vertices, they use linear
interpolation along this edge to find the point
where it is zero. These points connect to yield a
piecewise linear subpolygon silhouette line. The
resulting silhouette line is likely to have far fewer
artifacts. Also, the result is much closer to the real
silhouette than the result of a traditional polygonal
silhouette extraction method.
Nehab and Gattas [NG00] propose a completely
different approach for ray traced images. They cre-
ate an algorithm that divides ray into equivalence
categories or classes. They consider a pixel as rep-
resenting the ray cast through its lower left corner.
To determine the pixels that spawn edges, each
pixel is compared against its three 4-neighbors (a,
b, c for pixel p in Fig. 4). If any differences are de-
tected, the pixel is selected as an edge pixel.

Fig. 4: Edges are detected when a pixel's category is differ-
ent from that of one of its neighbors.

The path followed by a ray is represented by a tree
(see Fig. 5) and can be described by:

1. the ray who intersects the object
2. Rays coming from lights visible by the in-

tersected object
3. Reflected & refracted rays

 Two pixels are in the same category if their ray
trees are equal (have the same word obtained by
joining the summit of Knots):

Fig. 5: With the numbering of the node positions, trees a and
b receive strings 4A2BL1C and 7A3BL1,
respectively.

The results are very good for simple scenes. How-
ever, for complex scenes, the method can fail un-
predictably specially with scenes that represent re-
flections and refractions; refracted and reflected
object’s edges are detected (see Fig. 6)

 (a) (b)

Fig. 6: (a) A highly reflective scene. (b) Refraction example.

3. A new approach to understanding visually
complex scenes

The term of Non Photorealistic Rendering (NPR)
was, a long time ago, only applied for artistic
illustrations such as Pen and Ink or watercolor.
Many computer graphics researchers are nowadays
exploring NPR techniques as an alternative to
realistic rendering. More importantly, NPR is now
being acknowledged for its ability to communicate
the shape and structure of complex scene. These
techniques can emphasize specific features, convey
material properties and omit extraneous or
erroneous information. Therefore, we are going to
imitate and take inspiration from these techniques
by extracting apparent contours of the real object
present in the scene in order to make a better
knowledge through realistic rendering.

We define a visually complex scene as a scene
containing lights, mirrors and transparent objects.
Such a scene is sometimes difficult to understand
with a realistic rendering. To face this problem we
propose to delimit the objects of the scene by their
apparent contour before rendering the image and
before adding transparency, reflections and/or
refractions. With this technique, the real objects of
the scene may be overlaid on the realistic
rendering, making the user able to distinguish
reality from reflection and refraction effects.

Our approach is divided in two parts:

1. The selective refinement part [PD91] that
searches for an initial contour pixel related
to each real object presents in the scene.

2. The code direction part that searches for the
complete contours.

Both parts use simplified AI heuristic search.

3.1 The selective refinement part

Our goal is to find for each object, one contour
point which will be used as a departure point for
our code direction method.
First, we divide the image of pixels into a set of
macro pixels (8x8 pixels). For each macro pixel,
we send rays to the up right (UR), up left (UL)
down right (DR) and down left (DL) pixels to
detect for each ray the ID of the closest object. We
associate each returned ID to its correspondent
pixel.

The macro pixels which represent different
intersections most contain a contour pixel. They
are considered as our useful macro pixels which
are subdivided into 4 sub macro pixels. The same
process is applied to each sub macro pixel until we
obtain a block of 2x2 pixels (see Fig.7). The block
of 2x2 pixels that has intersection with different
objects, contains certainly at least a one contour
point. More we have different intersections in the
block, more we have initial contour pixels. To
avoid having more than one initial contour pixel
for the same object, since we get the first contour
pixel of an object, we neglect all other pixels that
have the same ID.

Fig. 7: The macroPixel that intersects different objects is
divided into 4 sub macro pixels.

3.2 Code direction part

Our code direction algorithm starts with an initial
contour pixel and follows, at each time, a certain
direction that conducts us to the following contour
point. We repeat the same process until we obtain
the complete contour of an object.
In other words, this method can be applied by
following these 3 steps:

1. Choose the departure point.
2. Choose the initial direction to the second

contour point.
3. Choose the following direction to the

following contour point

Before talking about the steps of the algorithm, we
define first for each pixel, its 8 neighbors. Each
pixel in the neighborhood has a previous and a
following pixel respecting the order indexed from
0 to 7. For example the neighbor number 1
(coordinate(x-1, y+1)) has the neighbors 0
(coordinate (x, y+1)) and 2 (coordinate(x-1, y)) as
its previous and following pixels (see Fig. 8)

Fig 8:The coordinates of the 8 neighbors indexed from 0 to 7

Step 1: Choose the departure point

We start our algorithm with the initial contour
pixels obtained by the selective refinement method.
More we have initial pixels, obtained by the
selective refinement, more we have contours that
have to be detected.

Step 2: Choose the initial direction to the second
contour point

The second contour pixel should be one of the 8
neighbors of the departure one.
We send a ray to each neighbor. The first one that
has the same ID of the departure point will be our
current pixel that has to be tested as contour or non
contour point.

 The current pixel is considered as a contour
point if its previous and following pixels
don’t have the same ID.

 If the tested pixel wasn’t a contour point,
we pass to the other neighbors until we get
the one that has the same ID of the
departure point and apply the same test.

 If all the neighbors were tested and none of
them was a contour pixel, we stop the
research.

Step 3: Choose the following direction to the
following contour point

Since we get the second contour pixel we color it
with a special color (red) and apply the same
process to find the following direction by
considering the obtained contour pixel as a starting
one. In order to avoid a return to a chosen contour
point, we only test between the 8 neighbors which
are not colored yet.
The algorithm will stop when we fall in one of
these tow cases:

 We return to the initial departure point
(closed contour)

 None of the neighbors of the current pixel
is a contour point (opened contour)

4. First results

The method presented in section 3 have been
implemented and obtained results allow to
conclude that it is possible to visually enhance the
understanding of complex scenes which contain
reflections refractions and shadows by detecting
real object contours.

The rendered image’s size is 640 x 480 pixels. The
apparent contours are traced in red color in order to
overlay the real objects present in the scene.
Results are shown in Fig.10 and timing results for
the contours computation cost and the rendering
cost are given in the Table 1. The images shown in
Fig. 10 represent different scene cases.

Scenes 1 and 2 represent the same objects with and
without reflections and refractions respectively.
We have certainly obtained for both of them the
same contour and with the same cost in time. It is
du to the fact that our algorithm computes the
contour directly from the scene not from its image,
apart from the way it will be rendered. Moreover,
Scene 1 is not visually good understood because of
the presence of the shadow in the floor and its
reflection on the sphere. The detection of contours
makes the visualization better and helps the
observer to distinguish the 3 spheres from,
shadows, reflections and refractions.

Scene 3 represents objects which hide others,
whereas Scene 4 represents the case of objects in
shade where objects intersect each other. In both of
them, our algorithm is able to detect visible
silhouettes and crease edges.

This method can be applied to any scene’s model.
However, in the case of polygonal mesh, the
algorithm detects the contour of each polygon as an
object which is not desired for the enhancement of
the understanding of the scene (Fig. 9 part (b) and
(c)). This problem can be resolved if the polygonal
mesh represents only one object or if each object of
the scene is modeled separately, by drawing just
the silhouette (Fig. 9 part (d) and (e)). It can be
done by choosing the contour pixels which are
between different objects or between the object and
the background of the scene.

But when the polygonal mesh represents many
objects, our algorithm fails to draw the apparent
contours of each object because the objects are not
defined separately. As it is presented in Fig. 9(a),
the scene is modeled by a polygonal mesh with
1056 vertices and 2088 polygons. It is a sphere
which contains in the center another object which
is a small cube.

Our algorithm fails to detect the apparent contour
of each one separately because we don’t know to
which polygon belongs each object. It can just
detect the silhouette of the sphere.

Scene
Time to render

the scene
(seconds)

Time to detect
the contour
(seconds)

Scene
Time to render

the scene
(seconds)

Time to detect
the contour
(seconds)

Scene 1 16.122 0.15 Scene 3 17.806 0.311
Scene 2 15.172 0.15 Scene 4 17.806 0.1

Table 1: Time Results to render each scene and detect its contour

 (a) Sphere Scene

 (b) Sphere’s Apparent Contour (c) Sphere scene with it’s apparent Contour

 (d) Sphere’s silhouette (e) Sphere scene and it’s silhouette

 Fig. 9: Sphere scene and its apparent contours

Scene 1 Scene 1’s contour Scene 1 with its contour

Scene 2 Scene 2’s contour Scene 2 with its contour

Scene3 Scene 3’s contour Scene 3 with its contour

Scene 4 Scene 4’s contour Scene 4 with its contour
Fig. 10: Results obtained by using the selective refinement with code direction method

5. Conclusion and future work

In this paper, after a presentation of the main
methods allowing getting a good view of a scene
for a better understanding, as well as the main
contour extracting methods, we have presented a
new method permitting to understand visually
complex scenes. This kind of methods can be used

to improve computer game programming
techniques.
The proposed method combines ray casting and
selective refinement and allows extracting the
apparent contours of the “real” objects of a scene.
These contours, overlaid on the realistic rendering
of the scene allow the user to distinguish between
parts of the image that correspond to real objects of
the scene and the reflections, refractions and

shadows parts. The first obtained results seem
convincing.
This method, could be combined with techniques
computing a good point of view and highly
improve visually complex scene understanding.

6. Acknowledgements

This work has been supported and financed in part
with funds of the European project GameTools. It
has also been partly supported and financed by the
Limousin Region (France). The authors would like
to thank all people and organisations which have
supported in any manner this project.

7. References

[BL01] BOTTINO A. and LAURENTINI A.,
“Experimenting with non instructive motion
capture in a virtual environment”. The visual
Computer, Volume 17, Number 1, 2001, pp. 14-
29, ISSN 0178-2789.

[BS00] BUCHANAN J.W. and SOUSA M.C.,
“The Edge Buffer: A Data Structure for Easy
Silhouette Rendering,” Proceedings 1st Int’l Symp.
Non-Photorealistic Animation and Rendering,
ACM Press, 2000, pp. 39-42.

[CC88] COLIN C., “A System for Exploring the
Universe of Polyhedral Shapes”, Eurographics’88,
Nice (France), September 1988.

[CM02] CARD D. and MITCHELL J.L., “Non-
Photorealistic Rendering with Pixel and Vertex
Shaders,” Vertex and Pixel Shaders Tips and
Tricks, W. Engel, ed., Wordware, 2002.

[CP98] CHUNG Y. C., PARK J. W., SHIN H.,
and CHOI B.K., “Modeling the surface swept by
generalized cutter for NC verification”. Computer-
aided Design, Volume 30, Number 8, July 1998,
pp. 587-594.

[DC06] DECAUDIN P., “Cartoon looking
rendering of 3D scenes”, Research Report INIRIA
2919, June 1996.

[DG01] DORME G., “Study and implementation
of 3D scene understanding techniques”. PhD

thesis, University of Limoges (France), June 2001.
In French.

[DS00] DEUSSEN O. and STROTHOTTE T.,
“Computer-Generated Pen and Ink Illustration of
Trees”, Proceedingss Siggraaph 2000, Computer
Graphics, (Proceedings Ann. Conf. Series),
Volume 34, ACM Press, 2000, pp. 13-18.

[FP99] FUA P., PLANKERS R., and
THALMANN D., “From synthesis to analysis:
Fitting human animation models to image data”. In
computer Graphics internationnal’ 99, June 1999,
pp.4, IEEE CS Press. ISBN 0-7695-0185-0.

[GB99] GOOCH B. et al., “Interactive Technical
Illustration,” Proceedings 1999 ACM Symp.
Interactive 3D Graphics, ACM Press, 1999,pp. 31-
38.

[HA90] HERTZMANN A., “Introduction to 3D
Non-Photorealistic Rendering: Silhouettes and
outlines”, Non-Photorealistic rendering(Siggraph
99 Course Notes),S.Green, ed., ACM Press 1999.

[HE01] HAINES E., “Soft planar shadows using
plateaus”. Journal of graphics Tools, Volume 6,
Issue 1, 2001, pp. 19-27.

[HZ00] HERTZMANN A. and ZORIN D.,
“Illustrating Smooth Surfaces,”Proceedings
Siggraph 00, Computer Graphics (Proceedings
Ann. Conf. Series), S.N. Spencer, ed., ACM Press,
2000, pp. 517-526.

[IS03] ISENBERG T. et al., « A Developper’s
Guide to silhouette Algorithms for Polygonal
Models », IEEE Computer Graphics and
Applications, Volume 23, Number 4, pp. 28-37,
July/August 2003.

[JC01] JOHNSON D. E., COHEN E., “Spatialized
normal cone hierarchies”, Symposium on
interactive 3D Graphics, March 01, pp.129-134. In
2001 ACM, ISBN 1-58113-292-1

[JP05] PLEMENOS D., GRASSET J., JAUBERT
B., TAMINE K., “Intelligent visibility-based 3D
scene processing techniques for computer games”,
GraphiCon’2005, Novosibirsk (Russia), June
2005.

[JP06] JAUBERT B., TAMINE K., PLEMENOS
D., “Techniques for off-line exploration using a
virtual camera”, International Conference
3IA’2006, Limoges (France), May 23 – 24, 2006.

[JR02] JENSEN C. G., RED W. E., and PI J.,
“Tool selection for five axis curvature matched
machining”. Computer-aided Design, Volume 34,
Number 3, March 2002, pp. 251-266, ISSN 0010-
4485.

[KK88] KAMADA T., KAWAI S., “A Simple
Method for Computing General Position in
Displaying Three-dimensional Objects”, Computer
Vision, Graphics and Image Processing, 41
(1988).

[LG00] LEE W., GU J., and MAGNENAT-
THALMANN N., “Generating animable 3D virtual
humans from photographs. Computer Graphics
Forum, August 2000, Volume 19, Number 3, ISSN
1067-7055.

[NG00] NEHAB D. and GATTAS M., “Ray Path
Categorization”, Proceedingss of the Brazilian
Symposium on Computer Graphics and Image
Processing -SIBGRAPI, Gramado, Brazil, 2000,
pp. 227-234.

[ND03] NIENHAUS M. and DOELLNER J.,
“Edge Enhancement- An algorithm for real time
Non-Photorealistic Rendering”, Journal of WSCG
2003, Plzen Czech Republic, 2003, Volume 11,
Number 1, ISSN 1213-6972.

[OZ06] OLSON M. and ZHANG H., “Silhouette
Extraction in Hough Space”, Computer Graphics
Forum (special issue on Eurographics 2006),
Volume 25, Number 3, 2006, pp.273-282.

[PB96] PLEMENOS D., BENAYADA M.,
“Intelligent display in scene modeling. New
techniques to automatically compute good views”,
GraphiCon’96, Saint Petersburg, July 1996.

[PD91] PLEMENOS D., “A contribution to the
study and development of scene modelling,
generation and visualisation techniques”. The
MultiFormes project, Professorial dissertation,
Nantes (France), November 1991.

[PD99] BARRAL P., DORME G., PLEMENOS
D., “Visual understanding of a scene by automatic
movement of a camera”, GraphiCon’99, Moscow
(Russia), August 26 - September 3, 1999.

[PD00] BARRAL P., DORME G. PLEMENOS
D., “Scene understanding techniques using a
virtual camera”, Short paper, Eurographics’2000,
Interlagen (Switzerland), August 20 - 25, 2000.

[RC99] RASKAR R. and COHEN M., “Image
Precision Silhouette Edges,” Proceedings 1999
ACM Symp. Interactive 3D Graphics, S.N.
Spencer, ed., ACM Press, 1999, pp. 135-140.11.

[RE92] ROSSIGNAC J.R. and VAN EMMERIK
M., “Hidden Contours on a Frame-Buffer,”
Proceedings 7th Eurographics Workshop
Computer Graphics Hardware, Eurographics,
1992, pp. 188-204.

[RP89] RUSTAGI P., “Silhouette Line Display
from Shaded Models”,Iris Universe, Fall 1989, p.
42-44.

[RR01] RASKAR R., “Hardware Support for Non-
Photorealistic Rendering,”Proceedings 2001
Siggraph/Eurographics Workshop onGraphics
Hardware, ACM Press, 2001, pp. 41-46

[SF02] SBERT M., FEIXAS M., RIGAU J.,
CASTRO F., VAZQUEZ P.-P., “Applications of
the information theory to computer graphics”,
International Conference 3IA’2002, Limoges
(France), May 14-15, 2002.

[SG05] RUSINKIEWICS S. et al., « Line
Drawings from 3D Models”, International
Conference on Computer Graphics and Interactive
Techniques, ACM Siggraph 2005 Course 7, Los
Angelos, California, Number 1, July 2005

[SP05] SOKOLOV D., PLEMENOS D.,
“Viewpoint quality and scene understanding”,
VAST 2005 Eurographics Symposium
Proceedingss, pp. 67-73, Pisa, Italy (2005).

[SP06] SOKOLOV D., PLEMENOS D.,,
TAMINE K., “Methods and data structures for

virtual world exploration”, The Visual Computer,
2006.

[ST90] SAITO T. and TAKAHASHI.T.
“Comprehensible Rendering of 3-D Shapes”,
Computer Graphics (SIGGRAPH ’90
Proceedings), Volume 24, pages 197–206, August
1990.

[VP03] VAZQUEZ P.-P., “On the selection of
good views and its application to computer
graphics”. PhD Thesis, Barcelona (Spain), May 26,
2003.

[VS03] VAZQUEZ P.-P., SBERT M., “Automatic
indoor scene exploration”, Proceedingss of the
International Conference 3IA’2003, Limoges
(France), May 14-15, 2003.

About the authors

Nancy DANDACHY is a PhD student at the
XLIM laboratory of the University of Limoges
(France). Her research area is scene understanding
using alternative rendering methods.
dandachy@msi.unilim.fr

Dimitri PLEMENOS is an emeritus professor at
the XLIM laboratory of the University of Limoges
(France). His research area is intelligent techniques
in computer graphics, including declarative
modeling, intelligent rendering and intelligent
virtual world exploration. He is author or co-author
of several papers and member of the IPC of many
international conferences and journals. Dimitri
Plemenos is the organizer and general chair of the
3IA international annual conference on Computer
Graphics and Artificial Intelligence.
plemenos@unilim.fr

Bachar EL HASSAN is an assistant professor at
the Lebanese University, Faculty of Engineering,
1st branch (Lebanon). His research area is
Computer vision, image processing, and wireless
networking.
elhassan@ul.edu.lb

http://fr.f277.mail.yahoo.com/ym/Compose?To=elhassan@ul.edu.lb
mailto:plemenos@unilim.fr
mailto:dandachy@msi.unilim.fr

	Scene understanding by apparent contour extraction
	Abstract

