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Abstract

Viewpoint selection is an emerging area in computer graphics with applications in
fields such as scene exploration, image-based modelling, and volume visualization. As
an example, best view selection algorithms are used to obtain the minimum number
of views (or images) to best understand or model an object or scene. In this master
thesis, we present a new information-theoretic framework, created from the definition
of an information channel between a set of viewpoints (input) and the set of polygons
of an object (output), to deal with viewpoint selection, ambient occlusion and shape
similarity. First, the mutual information of this channel is shown to be a powerful tool
to deal with viewpoint selection, viewpoint similarity and scene exploration. Second,
from the reversion of the channel, mesh information and mesh saliency are computed.
Third, viewpoint mutual information is generalized in order to incorporate saliency as
an importance factor to guide the viewpoint selection. Fourth, we use the mesh infor-
mation as an ambient occlusion technique with applications to viewpoint enhancement
and relighting for non-photorealistic rendering. Finally, a new view-based approach to
compute shape similarity using a spherical registration process is presented. Although
we use a sphere of viewpoints around an object, our framework is also valid for any set
of viewpoints in a closed scene. A number of experiments demonstrate the robustness
of the presented approach and the good behavior of the proposed measures.

Keywords: viewpoint selection, mesh saliency, information theory, ambient occlusion,
shape similarity
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Esta máster tesis supone para mi muchas cosas. Primero es el puente que permite
cruzar el rı́o para poder llegar al otro lado, que no es ni más ni menos que realizar el
doctorado, y segundo y más importante, la oportunidad de haber podido trabajar con
una grandı́sima persona como Miquel. Te estoy muy agradecido por todo el tiempo
y esfuerzo que me has dedicado. He disfrutado mucho trabajando contigo estos dos
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1. Introduction

In this introductory chapter we reflect about the ideas behind viewpoint selection and
we explain the motivations and objectives of our research work. Finally, we present an
overview about the content of each chapter.

1.1. Viewpoint Selection

The basic question underlying the viewpoint selection study and application is “what
is a ‘good’ scene viewpoint”? Obviously, this question does not have a unique answer.
Depending on our objective, the best viewpoint can be, for instance, the most represen-
tative or the most unstable one, i.e., the one that maximally changes when it is moved
within its close neighborhood [BS05]. Palmer et al. [PRC81] and Blanz et al. [BTB99]
have presented different experiments demonstrating that observers prefer views (called
canonical views) that avoid occlusions and that are off-axis (such as a three-quarter view-
point), salient (the most significant characteristics of an object are visible), stable and
with a large number of visible surfaces.

In computer graphics, several viewpoint quality measures have been applied in ar-
eas such as scene understanding [PB96, VFSH01, PPB∗05], scene exploration [AVF04,
SPT06], image-based modeling [VFSH03] and volume visualization [BS05, TFTN05,
VFSG06, JS06]. In other areas, such as object recognition and mobile robotics, best view
selection is also a fundamental task.

Many works have demonstrated that the recognition process is view-dependent [PRC81,
BET95, TBZB97, BTB99]. In [TBZB97], the authors found that “visual recognition may
be explained by a view-based theory in which viewpoint-specific representations en-
code both quantitative and qualitative features”. In robotics, the simultaneous local-
ization and mapping problem (SLAM) requires that the robot decides on its own the
necessary motions to construct the most accurate map possible. In [GBL02] authors in-
vestigate map-building strategies for a mobile robot with imperfect control and sensing,
proposing an algorithm to guide him through a series of ’good’ positions, where ’good’
refers to the expected amount and quality of the information that will be revealed at
each new location.
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1.2. Motivations and Objectives

Intuitively, we may state that a good view is the one which gives the highest amount of
information of a model or scene. As an example, we can see in Figure 1.1 two different
views of the same model. Though the image on the left gives us some clues in order
to identify the object as a butterfly, the image on the right-hand side gives us a higher
amount of information making the scene more understandable.

According to [Vaz03], to determine the goodness of a viewpoint we have to answer
to basic questions:

1. Which is the kind of information we want to measure? In order to obtain a
well-built measure of a quality of a view we need first to identify what is the
information that has to be maximized. The faces that built up a 3D model or a
scene are considered as the pieces of information we can deal with.

2. How can we measure this information? To address the problem of the measure-
ment of the information we have borrowed some tools from Information Theory.

Extending the work initiated in [VFSH01, SPFG05], in this master thesis we present
a new and robust framework to deal with viewpoint selection, ambient occlusion and
shape similarity. Given a set of viewpoints surrounding the object, we define an in-
formation channel between the viewpoints and the polygons of the object. From this
channel, the viewpoint mutual information is used to obtain the best views of an object,
to calculate the stability of a viewpoint, and to guide the object exploration. Then, we
reverse the channel and we compute both the information and the saliency associated
with each polygon. From this polygonal saliency, we will show how to calculate how
salient is a viewpoint and we incorporate it to viewpoint mutual information to drive
the viewpoint selection. We also present a new information-theoretic ambient occlu-
sion technique based on the information associated with each polygon. Finally, we
introduce a new method for computing the shape dissimilarity between 3D polygonal
models using the mutual information and saliency spheres as a shape signature of 3D
objects.

1.3. Document Overview

The structure of this master thesis can be summarized as follows:

• Chapter 1. Introduction. We make a brief introduction and we give an overview
of the master thesis.

MASTER IN COMPUTING, Master Thesis 2



(a) (b)

Figure 1.1.: Two different views from the same object. Left image (a) gives less informa-
tion than the right (b) one.

• Chapter 2. Background and Related Work. We review some basic concepts of
information theory, viewpoint quality measures and ambient occlusion, as well
as some introduction about 3D shape retrieval.

• Chapter 3. Viewpoint Channel. We present the essence of the master thesis: the
Viewpoint Channel. That is, an information channel between a set of viewpoints
and the polygons of an object. From this channel, a new viewpoint quality mea-
sure based on mutual information is introduced. Finally, some mutual informa-
tion properties are used to define viewpoint similarity and stability.

• Chapter 4. Best View Selection and Object Exploration. We present a new selec-
tion algorithm, also used for viewpoint clustering and object exploration.

• Chapter 5. Mesh and Viewpoint Saliency. We reverse the viewpoint channel and
define the polygonal and viewpoint saliency. Our viewpoint quality measure is
also extended by incorporating the saliency as an importance factor.

• Chapter 6. Information-Theoretic Ambient Occlusion. Using the reversed view-
point channel, the information associated with each polygon is used as an occlu-
sion measure and is applied as an obscurance or ambient occlusion map of the
scene. Some interesting applications are also shown.

• Chapter 7. View-based Shape Similarity. We present a new spherical registration
method to quantify the shape similarity between 3D models using mutual informa-
tion and saliency spheres.

• Chapter 8. Conclusions and Future Work. We present our conclusions and pos-
sible future work.

3 MASTER IN COMPUTING, Master Thesis
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2. Background and Related Work

In this chapter we review some basic concepts of information theory (see [CT91]), view-
point quality, ambient occlusion and shape similarity.

2.1. Information-Theoretic Concepts

Let X be a finite set, let X be a random variable taking values x in X with distribution
p(x) = Pr[X = x]. Likewise, let Y be a random variable taking values y in Y . An
information channel between two random variables (input X and output Y) is charac-
terized by a probability transition matrix (composed of conditional probabilities) which
determines the output distribution given the input.

The Shannon entropy H(X) of a random variable X is defined by

H(X) = − ∑
x∈X

p(x) log p(x). (2.1)

It is also denoted by H(p) and measures the average uncertainty of a random variable
X. All logarithms are base 2 and entropy is expressed in bits. The convention that
0 log 0 = 0 is used. The conditional entropy is defined by

H(Y|X) = − ∑
x∈X

p(x) ∑
y∈Y

p(y|x) log p(y|x), (2.2)

where p(y|x) = Pr[Y = y|X = x] is the conditional probability. The conditional en-
tropy H(Y|X) measures the average uncertainty associated with Y if we know the out-
come of X. In general, H(Y|X) 6= H(X|Y), and H(X) ≥ H(X|Y) ≥ 0.

The mutual information (MI) between X and Y is defined by

I(X, Y) = H(X)− H(X|Y) = ∑
x∈X

p(x) ∑
y∈Y

p(y|x) log
p(y|x)
p(y)

. (2.3)

It is a measure of the shared information between X and Y. It can be seen that I(X, Y) =
I(Y, X) ≥ 0. A fundamental property of MI is given by the data processing inequality

5



which can be expressed in the following way: if X → Y → Z is a Markov chain, i.e.,
p(x, y, z) = p(x)p(y|x)p(z|y), then

I(X, Y) ≥ I(X, Z). (2.4)

This result demonstrates that no processing of Y, deterministic or random, can increase
the information that Y contains about X.

The relative entropy or Kullback-Leibler distance between two probability distributions
p = {p(x)} and q = {q(x)} defined over X is given by

KL(p|q) = ∑
x∈X

p(x) log
p(x)
q(x)

, (2.5)

where, from continuity, we use the convention that 0 log 0 = 0, p(x) log p(x)
0 = ∞ if

p(x) > 0, and 0 log 0
0 = 0. The relative entropy KL(p|q) is a divergence measure be-

tween the true probability distribution p and the target probability distribution q. It can
be proved that KL(p|q) ≥ 0.

A convex function f on the interval [a, b] fulfils the Jensen inequality:
∑n

i=1 λi f (xi)− f (∑n
i=1 λixi) ≥ 0 , where 0 ≤ λ ≤ 1, ∑n

i=1 λi = 1, and xi ∈ [a, b]. For a
concave function, the inequality is reversed. If f is substituted by the Shannon entropy,
which is a concave function, we obtain the Jensen-Shannon inequality [BR82]:

JS(π1, π2, . . . , πN ; p1, p2, . . . , pN) ≡ H

(
N

∑
i=1

πi pi

)
−

N

∑
i=1

πi H(pi) ≥ 0, (2.6)

where JS(π1, π2, . . . , πN ; p1, p2, . . . , pN) is the Jensen-Shannon divergence of probability
distributions p1, p2, . . . , pN with prior probabilities or weights π1, π2, . . . , πN , fulfilling
∑N

i=1 πi = 1. The JS-divergence measures how ‘far’ are the probabilities pi from their
likely joint source ∑N

i=1 πi pi and equals zero if and only if all the pi are equal. It is
important to note that the JS-divergence is identical to I(X, Y) when πi = p(xi) and
pi = p(Y|xi) for each xi ∈ X , where p(X) = {p(xi)} is the input distribution, p(Y|xi) =
{p(y1|xi), p(y2|xi), . . . , p(yM|xi)}, N = |X |, and M = |Y| [BR82, ST00b].

2.2. Viewpoint Quality Measures

We review now some viewpoint quality measures for polygonal models. In [PB96], the
quality of a viewpoint v of a scene is computed using the heuristic measure (HM) given
by

C(v) =
∑n

i=1d Pi(v)
Pi(v)+1e
n

+ ∑n
i=1 Pi(v)

r
, (2.7)

MASTER IN COMPUTING, Master Thesis 6



where Pi(v) is the number of pixels corresponding to the polygon i in the image ob-
tained from the viewpoint v, r is the total number of pixels of the image (resolution of
the image), and n is the total number of polygons of the scene. In this formula, dxe
denotes the smallest integer, greater than or equal to x. The first term in (2.7) gives the
fraction of visible surfaces with respect to the total number of surfaces, while the sec-
ond term is the ratio between the projected area of the scene (or object) and the screen
area (thus, its value is 1 for a closed scene).

From (2.1), the viewpoint entropy (VE) [VFSH01] has been defined from the relative
area of the projected polygons over the sphere of directions centered at viewpoint v.
Thus, the viewpoint entropy was defined by

Hv = −
N f

∑
i=0

ai

at
log

ai

at
, (2.8)

where N f is the number of polygons of the scene, ai is the projected area of polygon
i over the sphere, a0 represents the projected area of background in open scenes, and
at = ∑

N f
i=0 ai is the total area of the sphere. The maximum entropy is obtained when

a certain viewpoint can see all the polygons with the same projected area. The best
viewpoint is defined as the one that has maximum entropy. In molecular visualiza-
tion, both maximum and minimum entropy views show relevant characteristics of a
molecule [VFSL06].

From (2.5), a viewpoint quality measure, called viewpoint Kullback-Leibler distance
(VKL) [SPFG05], has been defined by

KLv =
N f

∑
i=1

ai

at
log

ai
at
Ai
AT

, (2.9)

where ai is the projected area of polygon i, at = ∑
N f
i=1 ai, Ai is the actual area of polygon

i and AT = ∑
N f
i=1 Ai is the total area of the scene or object. The VKL measure is inter-

preted as the distance between the normalized distribution of projected areas and the
‘ideal’ projection, given by the normalized distribution of the actual areas. In this case,
the background can not be taken into account. The minimum value 0 is obtained when
the normalized distribution of projected areas is equal to the normalized distribution
of actual areas. Thus, to select views of high quality means to minimize KLv.

Apart from the previous references on viewpoint quality measures, [PPB∗05] describe
a number of different ways to measure the goodness of a view of an object. After ana-
lyzing different view descriptors, they conclude that no single descriptor does a perfect

7 MASTER IN COMPUTING, Master Thesis



job and possibly a combination of them would amplify the advantage that each one
has. Given a sphere of viewpoints, [YSY∗06] computes the similarity between each two
disjoint views using Zernike moments analysis and obtain a similarity weighted spher-
ical graph. A view is considered to be stable if all edges incident on its viewpoint in the
spherical graph have high similarity weights. [AVF04] and [SPT06] present two differ-
ent exploration algorithms guided by viewpoint entropy and the total curvature of a
visible surface, respectively. In the volume rendering field, [BS05], [TFTN05] and [JS06]
use an extended version of viewpoint entropy and [VFSG06] introduces the viewpoint
mutual information. [CSCF07] uses viewpoint entropy as a perceptual measure for
mesh simplification.

Based on the investigation on canonical views, [GRMS01] presents a new method for
constructing images, where the viewpoint is chosen to be both off-axis and ‘natural’,
and [LME06] obtains the viewing direction from the combination of factors such as
saliency, occlusion, stability and familiarity. [LVJ05] has introduced the saliency as a
measure for regional importance for graphics meshes and [KV06] presented a visual-
saliency-based operator to enhance selected regions of a volume. [GCO06] introduced
a method for partial matching of surfaces by using the abstraction of salient geometric
features and a method to construct them.

2.3. Obscurances and Ambient Occlusion

Let us take a look at the illumination of the objects in the real world. Imagine we are
in an environment where the illumination is mostly diffuse and indirect, as if a clear
white wall dominated the scene or we were in open air in a cloudy day. In these cases,
the objects that are more hidden are seen darker, as the indirect light that comes from
mostly everywhere is occluded by other objects. Modelling this effect, that we will
call obscurances from now on, following [ZIK98, IKSZ03], is much more simple and
much less costly than global illumination. In global illumination we need to simulate
the interaction of light between all objects of our scene. The obscurances effect can be
considered as a pure geometric property of every point in our scene: we just need to
evaluate the hiddenness or occlusion of the point by considering the objects around it.

2.3.1. The Obscurances Illumination model

The Obscurances illumination model (see Figure 2.1) decouple direct and indirect illu-
mination and were first introduced in the videogame context as a technique to allow
fast editing of indirect illumination. The high quality of shadowing obtained made
them later to be included in production replacing radiosity. In the obscurances model,

MASTER IN COMPUTING, Master Thesis 8



(a) (b) (c)

Figure 2.1.: Several models with obscurances: A car (a), a tank (b) and a cathedral (c)
model. Thanks to Sergi Funtané and Nicolau Sunyer for the images.

obscurance W is given by

W(x) =
1
π

∫

Ω
ρ(d(x, ω)) cos θdω, (2.10)

where ρ is a function of the distance d(x, ω) of the first intersection of a ray shot from
x with direction ω, x is a surface point, θ is the angle between the normal vector at x
and direction ω, and the integration is over the hemisphere oriented according to the
surface normal.

The function ρ is a monotone increasing function of the distance d. It is defined for
all positive values and results in 0 when d is 0. From 0 to a determined value dmax,
the function increases from 0 to 1, and for values greater than dmax the returned value
is 1. This means that we only consider a limited environment around the point x and
beyond it we will not take care of the occlusions. The shape of the function ρ is shown
in Figure 2.2.

In this way, the integral function W(x) captures the geometric properties of the envi-
ronment of the point x. If we take a look at the extreme cases, an obscurance value of
1 means that the point is completely open (not occluded) and a value of 0 would mean
that it is completely occluded. This would be a very strange case, there exist points
with an obscurance value of 0, but as they are completely occluded, we can not see
them. The dmax (maximum distance) is the main parameter that controls the indirect
illumination computed with obscurances. The user chooses the value of dmax depend-
ing on the quantity of shadow she/he needs for the scene. It should be in concordance
with the relative sizes of the objects with respect to the scene and with the size of the
scene itself. It should be much larger, for example, if we compute a view of a stadium

9 MASTER IN COMPUTING, Master Thesis



Figure 2.2.: Shape of funtion ρ(d).

than if we compute a close-up of a foot and a ball.

The obscurances illumination model is thought to be used to simulate the indirect
lighting caused by diffuse interreflections between objects in a fast and simple way.
The direct lighting has to be computed apart and in an independent way. Fast, simple
and known techniques to compute direct lighting are commonly used. We can take any
of them and add the direct lighting results to the indirect lighting computation.

For more realistic results, the indirect lighting computed with obscurances has to
correlate with physically realistic indirect lighting. In particular, an image of a scene
computed with any global illumination technique, as path tracing, and an image of the
same scene with the same camera and light sources computed with obscurances have
to look similar, specially in average intensities. For this reason, the obscurance value of
a point has to be used in the following way to obtain its indirect illumination:

I(x) = R(x)× IA ×W(x) (2.11)

that is, the obscurance at point x is multiplied by the diffuse reflectivity (R(x)) at the
point and by an average intensity value (IA) of the whole scene.

The average ambient intensity (IA) is computed assuming that light energy is dis-
tributed in a uniform way among the whole scene and illuminates all objects with the
same intensity. In this way IA is:

IA =
Ravg

1− Ravg
× 1

Atotal

n

∑
i=1

Ai × Ei (2.12)

where Atotal and Ai are the total area and the area of each patch respectively, Ei is the
emittance of the patch and Ravg is the average reflectivity of all patches weighted by the
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area:

Ravg =
1

Atotal

n

∑
i=1

Ai × Ri (2.13)

2.3.2. Ambient Occlusion

The obscurances, as described previously, have inspired a family of techniques that
nowadays are implemented in most render software packages commonly used by the
animation and videogame industry. It all started in a course about the widely known
and used software package RenderMan at SIGGRAPH 2002, where two of the speak-
ers talked about a technique that they called ambient occlusion and had been using each
one in a different movie that same year. Hayden Landis [Lan02] from Industrial Light &
Magic used the ambient occlusion for self-shadowing of objects to “attenuate properly
the surfaces not fully exposed to the environment”. The examples were the planes from
the movie Pearl Harbor. They got the unoccluded lighting from a blurred environment
map looked up in a direction that averaged the unoccluded zone of the surroundings
of the hit point and called that direction bent normal.

In the same course and a few hours later, Bredow [Bre02] presented the use of the
obscurance effect for the more hidden zones of the Pishkin building, a fictional skyscrap-
per in the movie Stuart Little 2, and computed it by putting a large area light source
over the building and another one less intense under it, saving the results in textures to
reuse it in different frames.

Ambient occlusion (see Figure 2.3)

A(x) =
1
π

∫

Ω
V(x, ω) cos θdω, (2.14)

substitutes the ρ function in the obscurances (formula 2.10) by the visibility function
V(w, x) that has value zero when no geometry is visible in direction ω and one other-
wise.

2.3.3. Obscurances vs. Ambient Occlusion

Ambient occlusion as presented in the three presentations at SIGGRAPH represents a
simplification of the obscurances as understood in previous section in two ways. First,
the distance of the ray intersection to the original point is not taken into account, and the
function just results in 0 (intersects) or 1 (does not intersect). In a more conceptual way
we could think of ambient occlusion as a simple percentage of openness of a point, and
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(a) (b) (c)

Figure 2.3.: Several models with ambient occlusion: An indoor scene (a), a human
model (b) and a molecule (c).

in obscurances the secondary interreflections are taken into account and some lighting
intensity is added, that is, diffuse indirect lighting is actually taken into account (see
Figure 2.4). Second, the ambient intensity and average reflectivity parameters are nor-
mally not used, and some ambient parameter is adjusted in an empirical way. It is easy
to understand that physical accuracy is not really important in production rendering
and even less in videogames, as we only need to find realistic and visually pleasant
images. Only in other kind of applications as for example for architecture or interior
design, accurate lighting is important. This is why ambient occlusion has become so
popular in CGI and it is becoming widely used in videogames too.

Obscurances vs. ambient occlusion

• The use of a continuous function of the distance in obscurances to account for in-
direct lighting gives better results than ambient occlusion and allows the addition
of color bleeding.

• The average ambient intensity and average reflectivity are used in obscurances to
search for a more accurate physical lighting.

• Both work in open environments.

• Both illumination models are capable to simulate the ambient lighting distribu-
tion in an environment in a non-constant way and make possible to render realis-
tic images.

• Ambient occlusion and obscurances techniques are faster than global illumination
ones, but they not compute lighting in a physically based and accurated way.

MASTER IN COMPUTING, Master Thesis 12



(a) (b)

Figure 2.4.: A comparison between ambient occlusion (a) and obscurances with color
bleeding (b). Thanks to Àlex Méndez for the images.

2.3.4. State of the art

Now we are going to introduce some of the most recent research done about obscu-
rances and ambient occlusion. Méndez et al. [MSC03] introduced color bleeding, up-
dated the obscurances dynamically in the presence of moving objects and dealt with the
problem of important secondary reflectors. Later in [MSC∗06] obscurances were com-
puted in the GPU using the depth-peeling technique. Sattler et al. [SSZK04] compute
the visibility from the vertices of the object to the vertices of an hemispherical mesh
using the GPU. They also utilize the coherence in the visibility function to achieve
interactive frame rates with deformable objects with illumination coming from point
light sources at the vertices of the hemisphere. Bunnell [Bun05] approximates the mesh
triangles of the scene using disks, and combines the occlusion of multiple disks heuris-
tically. The visibility is approximated by an iterative algorithm. Kontkanen and Laine
[KL05] precompute an ambient occlusion field around each rigid object. Recently, Kon-
tkanen and Aila [KA06] apply ambient occlusion to animated characters by blending
the textures obtained for the different positions of the character.

2.4. 3D Shape Retrieval

In this section we discuss several issues related to 3D Shape Retrieval.

2.4.1. 3D Shape Retrieval Framework

Recent developments in techniques for modelling, digitizing and visualizing 3D shapes
has provoked an explosion in the number of available 3D models on the internet and in
specific databases. This has led to the development of 3D shape retrieval systems (see

13 MASTER IN COMPUTING, Master Thesis



[JT04] for a survey) that, given a query object, retrieve similar 3D objects.

At conceptual level, a typical shape retrieval framework (see Figure 2.5) consists of a
database with an index structure created offline and an online query engine. Each 3D
model has to be identified with a shape descriptor, providing an overall description of
its shape. The indexing data structure and the searching algorithm are used to search
efficiently. The online query engine computes the query descriptor and the models sim-
ilar to the query model are retrieved by matching descriptors to the query descriptor
from the index structure of the database. The similarity between two descriptors is
quantified by a dissimilarity measure.

According to [JT04] usually, 3D shape retrieval systems are usually evaluated with
respect to several requirements of content based 3D retrieval, such as:

• Shape representations requirements. Most of the 3D models found on the World
Wide Web are meshes defined in a file format supporting visual appearance.
These models are represented by “polygon soups”, consisting of unorganized sets
of polygons.

• Properties of dissimilarity measures. In order to measure how similar two ob-
jects are, it is necessary to compute distances between pairs of descriptors using
a dissimilarity measure.

• Efficiency. For large shape collections, it is inefficient to sequentially match all
objects in the database with the query object. Because retrieval should be fast,
efficient indexing search structures are needed to support efficient retrieval.

• Discrimination abilities. A shape descriptor should capture properties that dis-
criminate objects well.

• Ability to perform partial matching. In contrast to global shape matching, partial
matching finds a shape of which part is similar to a part of another shape.

• Robustness. It is often desirable that a shape descriptor is insensitive to noise and
small extra features, and robust against arbitrary topological degeneracies. Also if
the model is given in multiple levels of detail, these should not differ significantly
from the original model.

• Necesity of pose normalization. It is common that models have arbitrary scale,
orientation and position in the 3D space. Because not all dissimilarity measures
are invariant under rotation and translation, it may be necessary to place the 3D
models into a canonical coordinate system.
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Figure 2.5.: Conceptual framework for shape retrieval.

2.4.2. Shape Matching Methods

Shape matching methods can be divided in three broad categories: Feature-based meth-
ods, Graph based methods and View based methods.

Feature based Methods

In the context of 3D shape matching, features denote geometric and topological prop-
erties of 3D shapes. So, 3D shapes can be discriminated by measuring and comparing
their features. Feature based methods can be divided into four categories according to
the type of shape features used: Global Features, Global Feature distributions, Spatial Maps
and Local Features.

Feature-based methods from the first three categories represent features of a shape
using a single descriptor consisting of a d-dimensional vector of values, where the di-
mension d is fixed for all shapes. The value of d can easily be a few hundred. The
descriptor of a shape is a point in a high dimensional space, and two shapes are con-
sidered to be similar if they are close in this space. Retrieving the k best matches for
a 3Dquery model is equivalent to solving the k nearest neighbor problem. Using the
Euclidean distance, matching feature descriptors can be done efficiently in practice by
searching in multiple 1D spaces to solve the approximate k nearest neighbor problem
as shown by Indyk and Motwani [IM98]. In contrast with the feature based methods
from the first three categories, local feature-based methods describe for a number of
surface points the 3D shape around the point. For this purpose, for each surface point
a descriptor is used instead of a single descriptor.

Graph based methods

In general, the feature-based methods take into account only the pure geometry of
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the shape. In contrast, graph based methods attempt to extract a geometric meaning
from a 3D shape using a graph showing how shape components are linked together.
Graph based methods can be divided into three broad categories according to the type
of graph used: Model graphs, Reeb graphs, and Skeletons. For an extensive discussion of
Reeb graphs and skeletons we refer the reader to the paper of Biasotti et al. [SBP03].
Efficient computation of existing graph metrics for general graphs is not possible: com-
puting the edit distance is NP-hard [KZS96] and computing the maximal common sub-
graph [GJ79] is even NP-complete. Polynomial solutions can be obtained for directed
acyclic graphs such as shock graphs. Sebastian et al. [TBSK01] describe an approach to
compute a pseudo-metric between shock graphs. It is obtained by exhaustively search-
ing for the optimal deformation path between two 2D shapes, and using the cost of this
path as a distance between two shapes. But the computation time of this method is too
high for practical application, and it is not straightforwardly generalized to 3D.

View based methods

The main idea behind view-based similarity methods is that two 3D models are sim-
ilar, if they look similar from all viewing angles. A natural application of this paradigm
is the implementation of query interfaces based on defining a query by one or more
sketches showing the query from different views.

In [L0̈0] authors apply view-based similarity to retrieve 3D models using a 2D query
interface. In the preprocessing phase, for each 3D model a descriptor is obtained con-
sisting of a number of binary images. In the query phase, a sketch or a 2D image is used
as a query to retrieve a number of 3D models, whose images match the query. Also,
Funkhouser et al. [FMK∗02] apply view-based similarity to implement a 2D sketch
query interface. In the preprocessing phase a descriptor of each 3D model is obtained
by 13 thumbnail images of boundary contours of the 3D object as seen from 13 ortho-
graphic view directions. Then in the query phase the user defines a 3D shape query
by drawing one or more sketches. 3D shape models are retrieved by comparing these
sketches with the descriptors from the shapes in the database using image matching.
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3. Viewpoint Channel

In this chapter, we introduce an information channel between a set of viewpoints and
the set of polygons of an object to deal with viewpoint selection. Then we define the
viewpoint mutual information to select the most representative views of an object and
compare the behavior of this measure with the ones reviewed in Section 2.2. Finally,
viewpoint stability is defined from the notion of dissimilarity between two viewpoints,
which is given by the Jensen-Shannon divergence between their respective distribu-
tions.

3.1. Viewpoint Mutual Information

Our viewpoint selection framework is constructed from an information channel V → O
between the random variables V (input) and O (output), which represent, respectively,
a set of viewpoints and the set of polygons of an object (see Figure 3.1(a)). This channel,
which we call viewpoint channel, is defined by a conditional probability matrix obtained
from the projected areas of polygons at each viewpoint. Viewpoints will be indexed by
v and polygons by o. Throughout this document, the capital letters V and O as argu-
ments of p() will be used to denote probability distributions. For instance, while p(v)
will denote the probability of a single viewpoint v, p(V) will represent the input distri-
bution of the set of viewpoints.

The viewpoint channel can be interpreted as an observation channel where the con-
ditional probabilities represent the probability of seeing a determined polygon from a
given viewpoint (see Figure 3.1(b)). The three basic elements of this channel are:

• Conditional probability matrix p(O|V), where each element p(o|v) = ao
at

is de-
fined by the normalized projected area of polygon o over the sphere of directions
centered at viewpoint v. Conditional probabilities fulfil ∑o∈O p(o|v) = 1. In our
approach, background is not taken into account but it could be considered as an-
other polygon.

• Input distribution p(V), which represents the probability of selecting a viewpoint.
In our experiments, p(V) will be obtained from the normalization of the projected
area of the object at each viewpoint. This can be interpreted as the probability that
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(a) Viewpoint sphere. (b) Probability distributions of channel V → O.

Figure 3.1.: Viewpoint information channel.

a random ray originated at v hits (sees) the object. This assignation is consistent
with the objective of selecting the viewpoints which see more projected area. Let
us remember that this is a characteristic of a canonical view (see Chapter 1). The
input distribution can also be interpreted as the importance assigned to each view-
point v. For instance, the input distribution could also be defined by p(v) = 1

Nv
,

where Nv is the number of viewpoints.

• Output distribution p(O), defined by

p(o) = ∑
v∈V

p(v)p(o|v), (3.1)

which represents the average projected area of polygon o, i.e., the probability of
polygon o to be hit (seen) by a random ray cast from the viewpoint sphere.

From the previous definitions, the conditional entropy (2.2) is given by the average of
all viewpoint entropies:

H(O|V) = − ∑
v∈V

p(v) ∑
o∈O

p(o|v) log p(o|v) = ∑
v∈V

p(v)H(O|v), (3.2)

where H(O|v) = −∑o∈O p(o|v) log p(o|v) is the viewpoint entropy Hv (2.8) and mea-
sures the degree of uniformity of the projected area distribution at viewpoint v. Let us
observe that Hv has been now rewritten in a different form. Both entropies H(O|v) and
H(O|V) tend to infinity when polygons are infinitely refined. This makes these mea-
sures very sensitive to the discretisation of the object and in general not appropriate to
evaluate the quality of a viewpoint.

We now devote our attention to the mutual information (2.3) between V and O, that
expresses the degree of dependence or correlation between the set of viewpoints and the
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object. From (2.3), mutual information is given by

I(V, O) = ∑
v∈V

p(v) ∑
o∈O

p(o|v) log
p(o|v)
p(o)

= ∑
v∈V

p(v)I(v, O), (3.3)

where we define

I(v, O) = ∑
o∈O

p(o|v) log
p(o|v)
p(o)

(3.4)

as the viewpoint mutual information (VMI), which gives us the degree of dependence be-
tween the viewpoint v and the set of polygons, and it is a measure of the quality of
viewpoint v. Consequently, mutual information I(V, O) can be interpreted as the av-
erage viewpoint quality. Quality is considered here equivalent to representativeness. It
is also important to indicate that the level of resolution of the viewpoint sphere will
determine the accuracy of the measures.

In our framework, the best viewpoint is defined as the one that has minimum VMI.
High values of the measure mean a high dependence between viewpoint v and the
object, indicating a highly coupled view (for instance, between the viewpoint and a small
number of polygons with low average visibility). On the other hand, the lowest values
correspond to the most representative or relevant views, showing the maximum possible
number of polygons in a balanced way.

3.2. Discussion

Note that I(v, O) = KL(p(O|v)|p(O)), where p(O|v) is the conditional probability dis-
tribution between v and the object and p(O) is the marginal probability distribution of
O, which in our case corresponds to the distribution of the average of projected areas. It
is worth observing that p(O) plays the role of the target distribution in the KL distance
and also the role of the optimal distribution since our objective is that p(O|v) becomes
similar to p(O) to obtain the best views. On the other hand, this role agrees with intu-
ition since p(O) is the average visibility of polygon o over all viewpoints, i.e., the mixed
distribution of all views, and we can think of p(O) as representing, with a single dis-
tribution, the knowledge about the scene. Note the difference between VMI (3.4) and
VKL (2.9), due to the fact that in the last case the distance is taken with respect to the
actual areas.

In [VFSG06], it has been shown that the main advantage of VMI over VE is its robust-
ness to deal with any type of discretisation or resolution of the volumetric dataset. The
same advantage can be observed for polygonal data. Thus, while a highly refined mesh
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will attract the attention of VE, VMI will be almost insensitive to changes in the mesh
resolution. This behavior of both measures with respect to the discretization can be de-
duced from the mathematical analysis of VE and VMI. For instance, let us assume that
a regular polygon o of the object is subdivided into two equal parts o1 and o2 such that
p(o1|v) = p(o2|v), p(o1) = p(o2), p(o|v) = p(o1|v) + p(o2|v) and p(o) = p(o1) + p(o2).
Assuming that only the term referred to polygon o can change in the formulas for VE
(2.8) and VMI (3.4), we analyze their variation after the subdivision of o. The variation
of VE is given by

δH(O|v) = −p(o1|v) log p(o1|v)− p(o2|v) log p(o2|v)− (−p(o|v) log p(o|v)) = p(o|v).

Therefore, VE increases with a value p(o|v) after the subdivision. On the other hand,
the variation of VMI is given by

δI(v, O) = p(o1|v) log
p(o1|v)
p(o1)

+ p(o2|v) log
p(o2|v)
p(o2)

− p(o|v) log
p(o|v)
p(o)

= 0.

Thus, VMI remains invariant to the proposed subdivision. In general, if we compare
both measures for different discretisations, mutual information will give similar results
and VE will show an erratic behavior. Note that HM is also highly dependent on the
discretisation, since the first term in (2.7) is given by the quotient between the number of
visible polygons and the total number of polygons. The behavior of all these measures
with respect to the discretisation will be experimentally shown in the next section.

3.3. Results

In this section, the behavior of VMI (3.4) is compared with the one of HM (2.7), VE (2.8),
and VKL (2.9). To compute these viewpoint quality measures, we need a preprocess step
to estimate the projected area of the visible polygons of the object at each viewpoint.
Before projection, a different color is assigned to each polygon. The number of pixels
with a given color divided by the total number of pixels projected by the object gives
us the relative area of the polygon represented by this color (conditional probability
p(o|v)). Although all these measures are sensitive to the size of the viewpoint sphere
with respect to the object, in this master thesis we have not taken into account this pa-
rameter. For comparison purposes, all measures have been computed without taking
into account the background.

In our experiments, all the objects are centered in a sphere of 642 viewpoints built
from the recursive discretisation of an icosahedron and the camera is looking at the
center of this sphere. The projection resolution adopted is 640x480 and increasing it
would lead us to obtain a more accurate results with the drawback of a higher com-
putational cost of the preprocess step. In Table 3.1 we show the number of polygons
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Figure 3.2.: The figure shows the interface of our viewpoint software.

Cow Coffee cup Ship Lady of Elche

Number of triangles 9593 43935 47365 51978
Computational cost 41 sec 81 sec 62 sec 80 sec

Table 3.1.: Number of triangles of the models used and computational cost of the pre-
process step for each model.

of the models used in this section and the cost of the preprocess step, i.e., the cost of
computing the probability distributions p(V), p(O|V) and p(O). Even though a large
number of viewpoints have been used, a high quality can be also achieved with much
less viewpoints and the consequent reduction of timings. To show the behavior of the
measures, the sphere of viewpoints is represented by a color map, where red and blue
colors correspond respectively to the best and worst views. Note that a good viewpoint
corresponds to a high value for both HM (2.7) and VE (2.8), and to a low value for both
VKL (2.9) and VMI (3.4). Figure 3.2 shows the interface of our viewpoint software cre-
ated using the 3D-rendering engine Ogre3D (http://www.ogre3d.org). Our tests were
run on a Pentium IV 3GHz machine with 2 GB RAM and an Nvidia GeForce 8800 GTX
with 768 MB.

(a) (b) (c)

Figure 3.3.: Cow, ship and lady of Elche wireframe models.
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(i.a) (i.b) (i.c) (i.d)

(ii.a) (ii.b) (ii.c) (ii.d)

(iii.a) (iii.b) (iii.c) (iii.d)

Figure 3.4.: (a) The most representative and (b) the most restricted views, and (c-d) the
viewpoint spheres obtained respectively from the (i) HM, (ii) VE and (iii)
VMI measures. Red colors on the sphere represent the highest quality views
and blue colors represent the lowest quality views.

To evaluate the performance of the four viewpoint quality measures presented, five
models have been used: a cow (Figure 3.3(a)), two coffee-cup-and-dish with two differ-
ent discretisations of the dish (Figures 3.5(i.a) and 3.5(ii.a)), a ship (Figure 3.3(b)), and
the lady of Elche (Figure 3.3(c)). Figure 3.4 has been organized as follows. Rows (i), (ii)
and (iii) show, respectively, the behavior of HM, VE and VMI measures. Columns (a)
and (b) show, respectively, the best and worst views, and columns (c) and (d) show two
different projections of the viewpoint spheres. Figure 3.4 illustrates how VMI selects
better views than both HM and VE. Observe how VE chooses to see the most highly
discretised parts of the cow. The same occurs with HM, although this one also searches
for a view with higher projected area. While the worst views for the HM and VE mea-
sures correspond to the ones that see the less discretised parts, in the VMI case a true
restricted view is obtained.

Figure 3.5 shows the behavior of the HM, VE and VMI measures when the discreti-
sation of the object varies outstandingly. Rows (i) and (ii) show the viewpoint spheres
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(i.a) (i.b) (i.c) (i.d)

(ii.a) (ii.b) (ii.c) (ii.d)

Figure 3.5.: Column (a) shows the models used to compute the viewpoint spheres.
These are obtained respectively from (b) HM, (c) VE and (d) VMI measures.

computed respectively for the coffee-cup-and-dish model of Figure 3.5(i.a) and for the
same model with a more refined dish (Figure 3.5(ii.a)). We can clearly observe how
the spheres obtained from HM and VE change according to the discretisation variation,
whereas VMI spheres are almost insensitive to this variation.

The different behavior between VKL (a-b) and VMI (c-d) is shown in Figure 3.6. Re-
member that the main difference between VMI and VKL is that while the former com-
putes the distance between the projected areas of the polygons and the average area
seen by the set of viewpoints, the later calculates the distance with respect to the actual
areas of polygons. Due to this fact, the reliability of VKL is outstandingly affected by
the existence of many non visible or poorly visible polygons, as in the case of the ship
and lady of Elche models.

3.4. Viewpoint Similarity and Stability

As we have mentioned in Chapter 1, a basic property of a canonical view is its stabil-
ity [BTB99]. That is, observers prefer a view which minimally changes when it is moved
within its nearest neighborhood.

The use of Jensen-Shannon as a measure of view similarity has been previously pro-
posed by [BS05] in the volume rendering field. In our approach, this measure appears
naturally from the variation of the viewpoint quality (VMI).
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(i.a) (i.b) (i.c) (i.d)

(ii.a) (ii.b) (ii.c) (ii.d)

Figure 3.6.: Viewpoint spheres obtained respectively from the (a-b) VKL and (c-d) VMI
measures.

If we apply the data processing inequality (2.4) to the channel V → O, we find that
any clustering over V or O, respectively denoted by V̂ and Ô, will reduce I(V, O).
Therefore, if neighbor viewpoints (or polygons) are clustered, then I(V̂, O) ≤ I(V, O)
(or I(V, Ô) ≤ I(V, O)). The result of clustering (or merging) two viewpoints vi and vj

is defined as a ‘virtual’ viewpoint v̂ ≡ vi ⊕ vj such that

p(v̂) = p(vi ⊕ vj) = p(vi) + p(vj) (3.5)

and

p(o|v̂) = p(o|vi ⊕ vj) =
p(vi)p(o|vi) + p(vj)p(o|vj)

p(v̂)
. (3.6)

The reduction of MI when two viewpoints vi and vj are merged is given by

δI(vi, vj) = I(V, O)− I(V̂, O)

=
(

p(vi)I(vi, O) + p(vj)I(vj, O)
)− p(v̂)I(v̂, O)

= p(v̂)
(

p(vi)
p(v̂)

I(vi, O) +
p(vj)
p(v̂)

I(vj, O)− I(v̂, O)
)

= p(v̂)D(vi, vj), (3.7)

where we define

D(vi, vj) =
p(vi)
p(v̂)

I(vi, O) +
p(vj)
p(v̂)

I(vj, O)− I(v̂, O) (3.8)

as the viewpoint dissimilarity between vi and vj. That is, the loss of information when
two viewpoints are merged is interpreted as the dissimilarity between them. Note that
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the dissimilarity will be null when the two viewpoints capture the same distribution of
projected areas: if p(O|vi) = p(O|vj), then δIvi ,vj = 0.

It can be shown (see [ST00a]) that the viewpoint dissimilarity can also be written as

D(vi, vj) = JS
(

p(vi)
p(v̂)

,
p(vj)
p(v̂)

; p(O|vi), p(O|vj)
)

, (3.9)

where the second term is the Jensen-Shannon divergence (2.6) between the distributions

p(O|vi) and p(O|vj) captured by vi and vj with weights p(vi)
p(v̂) and p(vj)

p(v̂) , respectively. If
two views are very similar, i.e., the JS-divergence between them is small, the channel
can be simplified by substituting these two viewpoints by their merging, without a sig-
nificant loss of information.

Two interesting properties follow:

• It can be easily seen that the clustering of all viewpoints would give δI = I(V, O)
and, thus, I(V̂, O) = 0 (see Section 2.1).

• H(O) = H(O|V) + I(V, O) = H(O|V̂) + I(V̂, O), where H(O) is the entropy of
p(O). Note that if two viewpoints are clustered the decrease of I(V, O) is equal
to the increase of H(O|V) since H(O) remains constant (the discretisation of the
object has not been changed).

View unstability was defined by [BS05] as the maximum change in view that occur
when the camera position is small shifted within a neighborhood. Thus, a small change
corresponds to a stable viewpoint and a large change to an unstable one. We now
define the unstability of a viewpoint v as the average variation of dissimilarity between
v and its neighbor viewpoints. That is, vi is a stable viewpoint if p(O|vi) is close to the
probability distributions p(O|vj) of its neighbors, where vj stands for a neighbor of vi.
Thus, the viewpoint unstability of vi is defined by

U(vi) =
1

Nn

Nn

∑
j=1

D(vi, vj), (3.10)

where vj is a neighbor of vi and Nn is the number of neighbors of vi.

Figure 3.7 shows the behavior of the viewpoint stability measure for the coffee-cup-
and-dish, cow and lady of Elche models. Observe how the results obtained agree with
intuition.
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(i.a) (i.b) (i.c) (d.i)

(ii.a) (ii.b) (ii.c) (d.ii)

(iii.a) (iii.b) (iii.c) (d.ii)

Figure 3.7.: The (a) most stable and (b) most unstable viewpoints, and (c-d) unstability
spheres obtained for the (i) coffee-cup-and-dish, (ii) cow and (iii) lady of
Elche models. Red colors on the sphere represent high unstability values,
blue colors represent low unstability values.
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4. Best View Selection and Object

Exploration

In order to understand or model an object, we are interested in selecting a set of repre-
sentative views. This set has to provide a complete representation of the object, i.e., a
simplified representation of the information provided by all viewpoints. In this chapter,
new algorithms based on the concepts introduced in previous chapters (see Chapter 3)
are applied to both the selection of the N best representative views and object explo-
ration.

4.1. Selection of N Best Views

With the goal of obtaining the best representation of the object using the minimum
number of views, a new viewpoint selection algorithm based on VMI is presented. If
we look for a good set of views within the set of viewpoints, we will obtain the most
representative set by selecting the views such that their mixing (merging) minimizes
the distance to the target distribution p(O). We consider that this mixing provide us
with a balanced view of the object.

Thus, our selection algorithm will select the N viewpoints so that their merging v̂
minimizes the viewpoint mutual information I(v̂, O). Due to the fact that this opti-
mization algorithm is NP-complete, we adopt a greedy strategy by selecting successive
viewpoints that minimize I(v̂, O). That is, at each merging step we aim to maximize the
JS-divergence between the set of previously merged viewpoints and the new viewpoint
to be selected. This algorithm permits us to find in an automated and efficient way a
minimal set of views which represent the object or scene.

The algorithm proceeds as follows. First, we select the best viewpoint v1 with distri-
bution p(O|v1) corresponding to the minimum I(v, O). Next, we select v2 such that the
mixed distribution p(v1)p(O|v1) + p(v2)p(O|v2) will minimize I(v̂, O), where v̂ repre-
sents the clustering of v1 and v2. At each step, a new mixed distribution p(v1)p(O|v1) +
p(v2)p(O|v2) + . . . + p(vn)p(O|vn) is produced until the VMI-ratio given by I(v̂,O)

I(V,O) is
lower than a given threshold or a fixed number of views is achieved. This ratio is the
percentage of information about the object that we still lack to capture, and therefore
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Coffe Cup Dragon Lady of Elche Armadillo

Best view VMI Ratio VMI Ratio VMI Ratio VMI Ratio
1 1.471 0.730 2.124 0.903 1.355 0.703 1.791 0.850
2 0.692 0.343 1.134 0.482 0.644 0.334 0.837 0.397
3 0.346 0.172 0.725 0.308 0.458 0.237 0.616 0.292
4 0.262 0.130 0.550 0.234 0.275 0.143 0.416 0.197
5 0.207 0.130 0.479 0.203 0.219 0.113 0.310 0.147
6 0.190 0.095 0.378 0.160 0.153 0.079 0.238 0.113

Cost 36 sec 61 sec 38 sec 77 sec

Table 4.1.: For each model, we show the VMI values of the merging of all selected view-
points and the corresponding VMI-ratio.

can be interpreted as a measure of the goodness or representativeness of the selected
viewpoints.

Figure 4.1 show the six best views obtained with our selection algorithm for four
different models. In Table 4.1, for each new viewpoint selected we show the VMI of
the clustering of selected viewpoints (I(v̂, O)) and the corresponding VMI-ratio. For
instance, to achieve a degree of representativeness given by a VMI-ratio lower than 0.1,
six views are needed for the coffee-cup-and-dish and lady of Elche models but more for
the dragon and armadillo models. In addition, Table 4.1 shows the computation cost of
selecting the six best views. The behavior of our algorithm is also shown in Figure 4.2,
where we observe how the VMI values obtained from the successive mixed distribu-
tions (corresponding to the views of Figures 4.1(i), 4.1(ii), 4.1(iii), and 4.1(iv)) converge
asymptotically to zero. It is important to note that the best views for the coffee-cup-
and-dish, lady of Elche and armadillo models, shown respectively in Figures 4.1(i.a),
4.1(iii.a) and 4.1(iv.a), are not perceptually pleasant. This is due to the fact that, from a
purely geometric approach, the best views of Figure 4.1 correspond to the viewpoints
that their projected area distribution is more similar (in the KL sense) to the average pro-
jected area distribution (target distribution). This problem will be tackled in the next
chapters, introducing perceptual criteria to select the best views.

From the N best representative views, a simple greedy clustering algorithm which
partitions the sphere of viewpoints assigning each viewpoint to the ‘nearest’ best view-
point is proposed. This assignation is determined by the minimum JS-divergence be-
tween the viewpoint to be clustered and the best views. Using this method, the centroids
of the respective clusters are given by the most representative viewpoints. In Figure 4.3,
we show the behavior of this clustering algorithm for the (i) coffee-cup, (ii) dragon, (iii)
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(i)

(ii)

(iii)

(iv)

Figure 4.1.: The six most representative views selected by the VMI algorithm for the (i)
coffeecup-and-dish, (ii) dragon, (iii) lady of Elche (iv) and armadillo mod-
els.
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Figure 4.2.: VMI values obtained from the successive mixed distributions correspond-
ing to the views of Figures 4.1(i), 4.1(ii), 4.1(iii), and 4.1(iv).

(a) (b) (c) (d)

Figure 4.3.: Viewpoint clustering spheres with six clusters for the (a) coffee-cup-and-
dish, (b) dragon, (c) lady of Elche and (d) Armadillo models.
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lady of Elche and (iv) armadillo models.

4.2. Object Exploration

In this section, two greedy algorithms are presented to explore the object. In both cases,
the best viewpoint (minimum VMI) is the starting point of the object exploration. In
the first algorithm (guided tour), the path visits a set of N preselected best views which
ensure a good exploration of the object. In the second algorithm (exploratory tour), the
successive viewpoints are selected using the maximum novelty criterion with respect to
the parts seen of the object.

4.2.1. Guided tour

First, we obtain the list of the N best viewpoints. Then, the algorithm starts at the best
viewpoint and visits all the other best viewpoints following the minimum path. This is
obtained as follows. From the best viewpoint, we find the nearest (with minimum JS-
divergence) best viewpoint in the list. This is now the target viewpoint. Thus, from the
best viewpoint, successive neighbor viewpoints will be selected so that, without any
viewpoint repetition, their distance to the target viewpoint is minimum. The distance
between two viewpoints is always calculated from the JS-divergence. When the first
target viewpoint is achieved, we select a new target one among the rest of best view-
points in the list. Then we proceed in the same way until the last best view is reached
or the cycle is completed arriving at the initial best viewpoint. Figure 4.4(i) shows the
exploration of the coffee-cup-and-dish and the lady of Elche models from the six best
views obtained in each case (the blue, yellow and red light points correspond to the
starting, intermediate and ending viewpoints, respectively). Two different projections
of the sphere are shown to see the path better.

(a) (b) (c) (d)

Figure 4.4.: Guided tour around the coffee-cup-and-dish (a-b) and ship (c-d) models,
respectively.
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4.2.2. Exploratory tour

From [IB05], we know that maximum novelty or surprise attracts the attention of an
observer. Following this principle, the exploratory tour algorithm selects the best view-
point and then successively visits the (non-visited) neighbor viewpoints that minimize
the I(v̂, O) of all visited viewpoints. This means that at each step we select the view-
point that maximizes its JS-divergence with respect to all visited viewpoints and, con-
sequently, the most dissimilar (surprising) viewpoint is selected. This procedure stops
whether the VMI-ratio is lower than a given threshold. Figure 4.5(ii) shows the result
of the exploration of the coffee-cup-and-dish and the lady of Elche models.

(a) (b) (c) (d)

Figure 4.5.: Exploratory tour around the coffee-cup-and-dish (a-b) and ship (c-d) mod-
els, respectively.
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5. Mesh and Viewpoint Saliency

In this chapter we reverse the viewpoint channel presented previously (see Chapter 3)
to define the information associated to each polygon of the model. Then, this informa-
tion is used to compute the saliency of both, the polygons and the viewpoints. Finally,
we generalize the VMI to introduce the saliency of the triangles as an importance factor
to drive the viewpoint selection (see Chapter 4).

5.1. Polygonal Mutual Information

As we have seen in Chapter 3, the information associated with each viewpoint has been
obtained from the definition of the channel between the sphere of viewpoints and the
polygons of the object. Now, the information associated with a polygon will be defined as
the contribution of this polygon to the MI of this channel. To illustrate this new ap-
proach, the reversed channel O → V is considered, so that O is the input and V the
output.

From the Bayes theorem p(v, o) = p(v)p(o|v) = p(o)p(v|o), the mutual informa-
tion (3.3) can be rewritten as

I(O, V) = ∑
o∈O

p(o) ∑
v∈V

p(v|o) log
p(v|o)
p(v)

= ∑
o∈O

p(o)I(o, V), (5.1)

where we define

I(o, V) = ∑
v∈V

p(v|o) log
p(v|o)
p(v)

(5.2)

as the polygonal mutual information (PMI), which represents the degree of correlation be-
tween the polygon o and the set of viewpoints, and can be interpreted as the information
associated with polygon o. Analogous to VMI, low values of PMI correspond to poly-
gons that ‘see’ the maximum number of viewpoints in a balanced way, i.e., p(V|o) is
close to p(V). The opposite happens for high values. Let us remind that MI is invariant
to the reversion of the channel since I(V, O) = I(O, V). The application of PMI will be
shown in Chapter 6.
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5.2. Mesh Saliency

Itti et al. [IKN98] maintained that visual attention is saliency-dependent and use a
saliency map to represent the conspicuity or saliency at every location in the visual
field by a scalar quantity and to guide the selection of attended locations. In [LVJ05],
mesh saliency is captured from surface curvatures and is considered as a perception-
inspired measure of regional importance and has been used in graphics applications such
as mesh simplification and viewpoint selection. We now propose a new definition of
mesh saliency based on PMI.

Analogous to the view unstability (Section 3.4), defined from the dissimilarity be-
tween two views, we now define the view-based mesh saliency from the dissimilarity
between two polygons, which is given by the variation of polygonal mutual informa-
tion when two polygons are clustered. In this approach, mesh saliency is formulated in
terms of how the polygons ‘see’ the set of viewpoints. Thus, the saliency of a polygon
is defined as the average dissimilarity between this polygon and its neighbors.

Similarly to (3.7), the reduction of MI when two polygons oi and oj are clustered is
given by

δI(oi, oj) = I(V, O)− I(V, Ô)

= (p(oi)I(oi, V) + p(oj)I(oj, V))− p(ô)I(ô, V)

= p(ô)
(

p(oi)
p(ô)

I(oi, V) +
p(oj)
p(ô)

I(oj, V)− I(ô, V)
)

= p(ô)D(oi, oj), (5.3)

where ô = oi ⊕ oj is the result of clustering oi and oj and the polygonal dissimilarity
between oi and oj is defined by

D(oi, oj) =
p(oi)
p(ô)

I(oi, V) +
p(oj)
p(ô)

I(oj, V)− I(ô, V). (5.4)

This dissimilarity can also be written as

D(oi, oj) = JS
(

p(oi)
p(ô)

,
p(oj)
p(ô)

; p(V|oi), p(V|oj)
)

, (5.5)

where the second term is the Jensen-Shannon divergence (2.6) between p(V|oi) and

p(V|oj) with weights p(oi)
p(ô) and p(oj)

p(ô) , respectively. Hence, two polygons are ‘similar’
when the JS-divergence between them is small.

Some interesting properties follow:
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(a) (b) (c) (d)

Figure 5.1.: Mesh saliency for the (a) coffee-cup-and-dish, (b) dragon, (c) lady of Elche,
and (d) armadillo models.

• If two polygons are very ‘similar’, their clustering involves a small loss of mutual
information. If p(V|oi) = p(V|oj), then δI(oi, oj) = 0.

• It can be easily seen that the clustering of all polygons would give δI = I(V, O)
and, thus, I(Ô, V) = 0.

• H(V) = H(V|O) + I(O, V) = H(V|Ô) + I(Ô, V), where H(V) is the entropy
of p(V), H(V|O) = −∑o∈O p(o) ∑v∈V p(v|o) log p(v|o) = ∑o∈O p(o)H(V|o) and
H(V|o) can be interpreted as the uncertainty that polygon o “sees” the set of view-
points. The reduction of I(O, V) is equal to the increase of H(V|O) since H(V)
remains constant (the input distribution of V is not changed).

Similarly to the unstability of a viewpoint (3.10), the polygonal saliency of oi is defined
by

S(oi, V) =
1

No

No

∑
j=1

D(oi, oj) ≥ 0, (5.6)

where oj is a neighbor polygon of oi and No is the number of neighbor polygons of
oi. Thus, a polygon o will be salient if the average of JS-divergences between o and its
neighbors is high. On the other hand, a polygon at the center of a smooth region will
have probably low saliency since the polygons of this region will present small visibil-
ity differences with respect to the set of viewpoints.

Figure 5.1 shows the behavior of our saliency measure. The most salient parts are
represented in red colors and the least salient ones in blue. For instance, the handle of
the coffee-cup or the nose, mouth and eyes of the models are the most salient surfaces.
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5.3. Viewpoint Saliency

Similarly to [LVJ05], where mesh saliency was used to select the best views, we propose
a method to calculate the saliency of a viewpoint. Up to now we have calculated the
saliency of a polygon, however we can convey this information to the sphere of view-
points, using the conditional probabilities of the reversed channel. Hence, the viewpoint
saliency is defined by

S(v, O) = ∑
o∈O

S(o, V)p(v|o). (5.7)

Figure 5.2 show the viewpoint saliency for the coffee-cup-and-dish, Hebe and lady of
Elche models. Columns (a) and (b) illustrate the most salient view and the least one,
respectively. Columns (c) and (d) show two different projections of the corresponding
saliency spheres. Observe how the most salient views show us the most salient parts of
each object.

5.4. Importance-driven Viewpoint Selection

As we have mentioned in Chapter 1, it is desirable that a canonical view of an object
shows its most salient parts and also the largest number of visible surfaces [PRC81,
BTB99]. However, the measures introduced up to now in this master thesis only con-
sider the geometric relation between the object and the set of viewpoints. Therefore, we
can not expect that in general the best views fulfill the desired properties for a canonical
view. This fact motivates us to investigate how perceptual criteria such as saliency can
be introduced into our viewpoint selection framework in order to improve the auto-
matic selection of good views.

In the previous section we have presented a method to compute how salient is a
viewpoint, but we aim now to incorporate the polygonal saliency to the viewpoint mu-
tual information in order to take into account different factors concerning, respectively,
the amount of projected area, the geometric representativeness and the saliency of a
polygon.

First, we demonstrate how the importance can be introduced into the object space by
modifying directly the target distribution p(O). Second, we show the results obtained
by the use of the polygonal saliency as an importance factor in the viewpoint mutual
information measure.

Due to the fact that VMI represents the distance between the projected visibility dis-
tribution p(O|v) from viewpoint v and the target distribution p(O), VMI can be ex-
tended by weighting the target distribution with an importance factor. Thus, adding
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(i.a) (i.b) (i.c) (i.d)

(ii.a) (ii.b) (ii.c) (ii.d)

(iii.a) (iii.b) (iii.c) (iii.d)

(ii.a) (ii.b) (ii.c) (ii.d)

Figure 5.2.: The (a) most salient and (b) least salient views, and (c-d) saliency spheres
obtained for the (i) coffee-cup-and-dish, (ii) dragon, (iii) lady of Elche and
(iv) armadillo models. Red colors on the sphere represent high saliency
values, blue colors represent low saliency values.
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(i.a) (i.b) (i.c) (i.d)

(ii.a) (ii.b) (ii.c) (ii.d)

Figure 5.3.: VMI (i) and saliency-based VMI (ii) spheres for the coffee-cup-and-dish (a),
dragon (b), lady of Elche (c) and armadillo (d) models.

importance to our scheme means simply weighting the original target distribution by
an importance factor in order to obtain the new target distribution. The optimal view-
point would be the one viewing every polygon proportional to its average projected
area multiplied by its importance. Hence, the extended viewpoint mutual information
(EVMI) is given by

I′(v, O) = ∑
o∈O

p(o|v) log
p(o|v)
p′(o)

, (5.8)

where

p′(o) =
p(o)i(o)

∑o∈O p(o)i(o)
(5.9)

and i(o) is the importance of polygon o. In the experiments of this section, i(o) has been
substituted by the polygonal saliency S(o). We follow the convention that if S(o) = 0
then polygon o is not taken into account. Other features, such as illumination, could be
introduced as importance factors in the EVMI. In [VFSG06], the object importance has
been used to calculate the best views for a volumetric dataset.

The effects of incorporating saliency in our viewpoint selection framework are de-
picted in Figures 5.3 and 5.4, which show for the coffee-cup-and-dish, dragon, lady of
Elche and armadillo models the saliency-based VMI spheres and the six most represen-
tative views, obtained with the best view selection algorithm (Chapter 4) using EVMI.
The saliency-based VMI spheres of Figure 5.3 show the perceptual improvement ob-
tained with respect to the VMI spheres shown in Figure 3.5(i.d) and Figures 3.6(ii.c-d),
respectively. For instance, whereas the VMI-based best view of the coffee-cup-and-dish
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(i)

(ii)

(iii)

(iv)

Figure 5.4.: The six most representative saliency-based views for the coffeecup-and-
dish (i), dragon (ii), lady of Elche (iii) and armadillo (iv) models.
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shows the bottom of the dish (Figure 4.1(i)), the best view based on EVMI with saliency
shows a lateral view of the coffee cup (Figure 5.4(i)) which is perceptually much better
than the one of Figure 4.1(i). Similarly, the same conclusion can be obtained for the
lady of Elche and armadillo models (see the respective best views shown in Figure 4.1
and Figure 5.4). Note that, the dragon model has a good selection of views taking into
account a purely geometric approach (see Chapter 4) but also including saliency as an
importance factor.
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6. Information-Theoretic Ambient

Occlusion

Ambient occlusion is a powerful technique that mimics indirect global illumination at
a fraction of the cost. In this chapter, we introduce a new ambient occlusion technique
based on the mutual information (see Section 5.1) of a polygon with respect to all view-
points, which is dependent on the importance assigned to each viewpoint and helps to
enhance features such as the most salient parts. Further, the assignation of color to each
viewpoint combined with the polygonal information produces a nice visualization of
the object. Examples are given with coloroid palettes and non-photorealistic rendering.

6.1. Information-Theoretic Ambient Occlusion

As we have seen in Section 5.1, the information associated with a polygon (PMI) appears
from the reversed channel O → V, so that O is the input and V the output (see Figure
6.1), and is defined as

I(o, V) = ∑
v∈V

p(v|o) log
p(v|o)
p(v)

(6.1)

The PMI represents the degree of correlation between a certain polygon and the set
of viewpoints. Low values of PMI correspond to polygons that “see” the maximum
number of viewpoints in a balanced way and the opposite happens for high values.
Now, we can interpret PMI as a measure of the degree of occlusion of each triangle of
the model. That is, the more occluded a polygon, the less number of viewpoints it will
“see”.

To obtain the ambient occlusion of a model, the PMI of all polygons has to be normal-
ized between 0 and 1 and subtracted from 1, because low values of PMI, represented
in the grey-map by values near 1, correspond to non-occluded or visible (from many
viewpoints) polygons, while high values of PMI, represented in the grey-map by values
near 0, correspond to occluded polygons.

In Figures 6.2(ii-iii) we show the information maps corresponding to the models
shown in Figure 6.2(i). In Figure 6.2(ii) the polygonal information values are computed
from the center of each polygon, while in Figure 6.2(iii) these values have been linearly
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interpolated at the vertexes of the triangles. From now on, all images presented are
obtained from the interpolated values at the vertexes. Also, in Figure 6.2(iv) we show
the results of applying classic ambient occlusion. We want to stand out that, the pro-
jection resolution used in the preprocess step (see Chapter 3) to obtain PMI and the
texture resolution used in the computation of ambient occlusion models are 5120x3840
and 4096x4096, respectively.

In [SSZK04], a similar approach was used to compute ambient occlusion. A matrix
Mij is computed as nilj, where ni is the normal to the vertex of the object and lj is the
direction of a virtual light source placed at a bounding sphere. A number of virtual
light sources is used to approximate ambient lighting. The final contribution to the
vertex i is given by the sum for all visible light sources of Mij Ij, where Ij is the intensity
of the source.

Figure 6.1.: Probability distributions of channel O → V, elements of matrix I(O, V) and
color distribution c(V) assigned to the viewpoint sphere.

In Figures 6.2 and 6.3 we can observe our technique compared with classic ambient
occlusion. In the latter case, there is only a discrete set of possible values, since it is com-
puted as a proportion of hits. On the other hand, the quality of our ambient occlusion
measure depends on the resolution used to project the polygons of the scene (see Chap-
ter 3). If the resolution is not enough, the small triangles won’t be projected correctly.
We can observe this effect in Figure 6.6 and Figure 6.7, where we show a four by four
grid of the ambient occlusion computed for the Lady of Elche model. The rows rep-
resents the resolution of the projection (640x480, 1280x960, 2560x1920 and 5120x3840)
while the columns represents the number of viewpoints (12, 42, 162, 642) used. See
how the artifacts (the darker small spherical bumps of the Lady of Elche garments)
tend to dissapear as the resultion and/or the number of viewpoints are increased. Of
course, the higher the resolution of projection, the more time-consuming the preprocess
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(a.i) (b.i) (c.i) (d.i)

(a.ii) (b.ii) (c.ii) (d.ii)

(a.iii) (b.iii) (c.iii) (d.iii)

(a.iv) (b.iv) (c.iv) (d.iv)

Figure 6.2.: (i) Wireframe models. (ii) Polygonal mutual information maps. (iii) Values
from (ii) interpolated at the vertices. (iv) Ambient occlusion maps.
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(i)

(ii)

Figure 6.3.: Different frames of an animation using ambient occlusion (top row) and
our method (bottom row). The projection resolution used by our method is
640x480. The classic ambient occlusion have been computed using a texture
of 1042x1024. See how our ambient occlusion model is good enough, in
spite of the low resolution used.

(i)

(ii)

Figure 6.4.: Composition of our information-theoretic ambient occlusion and the tex-
tures of the Ogre (i) and tree models (ii).
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Figure 6.5.: Snapshots of an animation showing the use of our ambient occlusion tech-
nique on trees.

needed to compute PMI. We also want to note that we have experimentally verified that
the increase in the number of viewpoints above 642 viewpoints does not provoke visual
difference in the obtained results.

The models used in our examples come from Nvidia dynamic ambient occlusion
demo (Figure 6.2(a)), Xfrog public plants (Figure 6.5), De Espona 3D encyclopedia (Fig-
ure 6.2(b), Figure 6.2(d) and Figure 6.11), and The Stanford 3D Scanning Repository
(Figure 6.2(c) and Figure 6.12).

In Figure 6.12 we show a snapshot from a scene with our ambient occlusion technique
applied to the lucy model. Also, in Figures 6.4 and 6.5 we show several examples of the
use of polygonal information as ambient occlusion, where this is added to a textured
model.

6.2. Applications

As we have shown above, our polygonal mutual information can be used as an ambient
occlusion technique. In this section, PMI is also extended to enhance the most impor-
tant viewpoints or to reflect the color of the environment, a sort of color bleeding. Both
extensions are explained below.

6.2.1. Viewpoint Importance

From (6.1), importance can be introduced into the viewpoint space by modifying the in-
put distribution p(V) according to the importance we want to assign to each viewpoint.
The polygonal information will be modified accordingly. The effect can be observed in
Figure 6.8. For the three models shown, the range of images go from assigning almost
all importance to the best viewpoint in the first image, to assign equal importance to
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(a.i) (b.i) (c.i) (d.i)

(a.ii) (b.ii) (c.ii) (d.ii)

(a.iii) (b.iii) (c.iii) (d.iii)

(a.iv) (b.iv) (c.iv) (d.iv)

Figure 6.6.: Several ambient occlusion models for the Lady of Elche. For each row we
increase the projection resolution twice the row before, that is: 640x480 (i),
1280x960 (ii), 2560x1920 (iii) and 5120x3840 (iv). On the other hand, each
column increase the number of viewpoints in the following way: 12 (a), 42
(b), 162 (c) and 642 (d).
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(a.i) (b.i) (c.i) (d.i)

(a.ii) (b.ii) (c.ii) (d.ii)

(a.iii) (b.iii) (c.iii) (d.iii)

(a.iv) (b.iv) (c.iv) (d.iv)

Figure 6.7.: A close-up from several ambient occlusion models for the Lady of Elche.
For each row we increase the projection resolution twice the row before, that
is: 640x480 (i), 1280x960 (ii), 2560x1920 (iii) and 5120x3840 (iv). On the other
hand, each column increase the number of viewpoints in the following way:
12 (a), 42 (b), 162 (c) and 642 (d).
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(i)

(ii)

Figure 6.8.: Effect of assigning importance to the best viewpoint (first left image), plus
second best (second left image), plus third best (third left image), plus
fourth best (fourth best image) for the coffe cup (i) and Lady of Elche (ii)
models. Upper row viewpoints are selected according to geometry, in lower
row according to saliency. Last image (both upper and lower row) corre-
sponds to equal importance for all the viewpoints of the sphere.
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Figure 6.9.: The result of warping a color texture to the viewpoint sphere for computing
the color ambient occlusion model.

the two best viewpoints in the second image, till assigning equal importance to the
best 4 points in the fourth image. Last image is obtained assigning equal importance
to all viewpoints in the sphere. For each model, in the upper row we have considered
the viewpoints obtained from the best view selection algorithm presented in [FSG07],
while in the lower row the best viewpoints have been selected using the same algo-
rithm driven by the saliency of polygons (see also [FSG07]). Observe the improvement
of the images obtained when the most important viewpoints are the most salient ones.

6.2.2. Relighting for Non-Photorealistic rendering

Color ambient occlusion is obtained from the scalar product of a matrix row of I(O, V)
and the complementary of a color vector c(V):

Iα(o, V) = ∑
v∈V

I(o, v)(1− cα(v)), (6.2)

where α stands for each color channel, cα(v) is the normalized vector for channel α and
I(o, v) is a matrix element of I(O, V) (see Figure 6.1). After computing the polygonal
mutual information for each channel, the final color ambient occlusion is given by the
combination of the channels. We can get a color vector by warping a color texture
to the sphere of viewpoints. In this way, a color is assigned to each viewpoint (see
Figure 6.9). In Figure 6.10 and 6.11 we show the combination of this kind of relighting
technique with an NPR technique [LMHB00, Lak], where the several color palettes used
are Coloroid ones [Nem80]. Observe the nice effects obtained by this combination of
techniques.
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Figure 6.10.: Combination of information-theoretic ambient occlusion with a non-
photorealistic technique using Coloroid color palettes (left).

Figure 6.11.: Snapshots of an animation using our information-theoretic ambient occlu-
sion and the first row Coloroid palette shown in Figure 6.10, with a non-
photorealistic technique on a boat model.
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Figure 6.12.: Snapshots of a video demo using our information-theoretic ambient occlu-
sion on the lucy model.
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7. View-based Shape Similarity

In this chapter we present a new method for computing the shape similarity between
3D polygonal models using the information-theoretic viewpoint selection framework
presented previously. Given a 3D model, a sphere of viewpoints surrounding this
model is used to obtain its shape signature from the mutual information and saliency of
each viewpoint. These signatures represent the essence of the shape from a view-based
approach. Then, in order to quantify the dissimilarity between two models, their mu-
tual information and saliency spheres are registered, respectively, by minimizing the
L2 distance between them. Several experiments show the discrimination capabilities of
our approach and its potential suitability for object recognition.

7.1. Introduction

As we have seen in the previous chapters (see Chapter 3 and Chapter 5), while VMI
measures the degree of correlation between a viewpoint and the model, the viewpoint
saliency determines the amount of mesh saliency “seen” by each viewpoint. The VMI
and saliency spheres (Figure 7.1) are obtained from the mutual information and saliency
of each viewpoint and are now interpreted as shape signatures that capture the essence
of the shape from a view-based approach. So, the VMI and saliency spheres can be
considered as n-dimensional shape descriptors, that is, a shape descriptor composed
by n-values, being that values the VMI or saliency values corresponding to each view-
point of the VMI and saliency spheres.

(a) (b)

Figure 7.1.: The VMI (a) and saliency (b) sphere of the first car model shown in Fig-
ure 7.3. The VMI and saliency spheres shown on the right-hand side of (a)
and (b), have been obtained by linear interpolation of the VMI and saliency
values at viewpoint positions (left image of (a) and (b)).
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Our shape descriptors, VMI and saliency spheres, fulfill the following properties:

1. Discriminative power. A good shape descriptor should capture properties that
discriminate objects well. In the case of the VMI sphere, we capture the depen-
dence between the viewpoints and the polygons, while the saliency sphere mea-
sures the amount of saliency information coming or perceived from the model to
each viewpoint.

2. Insensitive to noise. A shape descriptor is desirable to be insensitive to noise
and small extra features and robust against arbitrary topological degeneracies,
e.g. if it is obtained by laser scanning. Also, different resolutions of the same
model should not modify the description given by the same shape descriptor. Be-
cause of the values given by the VMI and saliency spheres are computed using
a view-based approach only the most important details from the objects are cap-
tured. Also, in chapter 3, we have demonstrated the insensitiveness of VMI to
the discretisation variation of the models. On the contrary, the saliency sphere is
sensitive to the resolution of the 3D objects.

3. Rotation, translation and scale invariant. It is common that 3D models have arbi-
trary orientation, position and scale. Due to this fact, it may be necessary to place
the 3D models into a canonical coordinate system and then compute the shape de-
scriptor. As we have shown in previous chapters (see chapter 3 and chapter 5) the
VMI and saliency spheres have been computed placing the object into a canonical
coordinate system. That is, we place the model into the origin of coordinates, then
we scale it to fit into a unitary bounding sphere and compute VMI and saliency
for each viewpoint placed over a bounding sphere three times the unitary one.
The orientation of the model does not affect the our similarity method because as
we will explain later, we perform a spherical registration which explores all the
sphere positions.

Taking into account these properties and how VMI and saliency spheres verify them,
we can conclude that both spheres are suitable to be considered as good shape descrip-
tors.

7.2. View-based Shape Similarity

The goal of the registration between two VMI or two saliency spheres, respectively, is
to find the transformation that brings one sphere (floating) into the best possible spa-
tial correspondence with the other one (fixed) by minimizing a dissimilarity metric.
To achieve that objective we propose a registration method where the main compo-
nents and their interconnections are shown in Figure 7.2. The basic input data to the
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registration process are two VMI or two saliency spheres. The transform component
represents the spatial mapping of points from the fixed sphere space to points in the
floating sphere space. The interpolator component is used to evaluate floating sphere
values at non-viewpoint positions and, finally, the metric module provides a measure
of how well the fixed sphere is matched by the transformed floating sphere.

Figure 7.2.: Registration of VMI or saliency spheres and its main components.

The steps followed by our method to achieve the best matching between the fixed
and the floating sphere are:

1. Interpolation. The discrete nature of our VMI and saliency spheres implies the
need of having an interpolator component. The nearest neighbor interpolator has
been used. This means that when we need to evaluate values at non-viewpoint
positions on the floating sphere we will use the VMI or saliency value of the clos-
est viewpoint.

2. Comparison. To quantify the quality of the alignment between the fixed and the
floating sphere we need a dissimilarity metric. In our method we have adopted
the L2 distance between the VMI

DVMI(S1, S2) =
√

∑
v∈V

(I(v, O1)− I(v, O2))2. (7.1)

or saliency

Dsaliency(S1, S2) =
√

∑
v∈V

(S(v, O1)− S(v, O2))2. (7.2)

values of the spheres S1 and S2 corresponding to models O1 and O2, respectively.

3. Transformation. We need two transformation parameters (degrees of freedom):
R(θ) and R(ϕ), defined respectively as the rotation around Z and Y axis. These two

55 MASTER IN COMPUTING, Master Thesis



parameters take values in the range [0◦,360◦] for the first parameter and [0◦,180◦]
for the second.

When all the possible registration positions (dependent on the values of the transfor-
mation parameters) have been analyzed, the correct matching is given by the minimum
dissimilarity. That is, the position that minimize the L2 distance between the fixed and
the floating sphere values.

In our current implementation, running on a Pentium IV 3GHz machine with 2GB
RAM and an NVidia GeForce 8800 GTX, a single registration takes approximately two
minutes when the transformation parameters are increased in steps of five degrees.
Obviously, at smaller steps more time-consuming the method will perform. However,
the cost of this registration process could be considerably improved by using numerical
optimizers. The memory space consumption required by our method can be considered
negligible: we need a list of n float numbers for each of both spheres involved in the
registration, being n the number of viewpoint of the spheres. In our experiments shown
in next section we have used n = 642, but with less viewpoints we could obtain also
good results.

7.3. Results

The view-based shape matching described in the previous section has been incorpo-
rated into our viewpoint software using the Ogre3D rendering engine (http://www.
ogre3d.org). In our experiments, the viewpoint sphere is built from the smallest bound-
ing sphere of the model. The radius of the viewpoint sphere is three times the radius of
the bounding one.

In order to demonstrate the performance of our approach we have used four families
of models (fishes, chairs, cars and shoes) where each one is composed by four different
samples (Figure 7.3). Our registration method has been applied to all pairs of models
obtaining the dissimilarity between the VMI and the saliency spheres. The transforma-
tion parameters R(θ) and R(ϕ) take values in intervals of five degrees.

From the dissimilarity values obtained with the spherical registration of both, the
VMI and the saliency spheres, we have built the dissimilarity map shown in Figure
7.4 for the VMI and in Figure 7.6 for the saliency sphere. Each row and column of the
maps represents an object and the color given to the intersection between them is the
resulting dissimilarity (not intersected regions between models have been linearly in-
terpolated). Red and blue colors represent dissimilar and similar objects, respectively.
Note the blue regions along the diagonal as well as the predominance of warm colors
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(i)

(ii)

(iii)

(iv)

Figure 7.3.: Models used in our experiments. Each row shows a family of models: fishes
(i), chairs (ii), cars (iii) and shoes (iv).

while moving away. Let us note the large blue and green area surrounding the car fam-
ily region and the dissimilarity of fishes with respect to the rest of the models in both
spherical registrations.

In Figure 7.5 and 7.7 we show the shape similarity between the first model of each
family and the rest of models. The list of models has been ordered according to the dis-
similarity obtained with the VMI or saliency spherical registration. Observe the perfect
matching in the fish and car families and the good behavior of the chairs and shoes for
both shape descriptors.

As can be seen, the registration of VMI or saliency spheres give us good results but
not the perfect ones (not all the family models are between the first four in the similarity
lists shown). This is due to the fact that we use only one shape descriptor for each
model (the VMI or the Saliency sphere) and then, we compute the dissimilarity. Now,
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the idea is to combine the goodness given by the results of both spherical registrations
to improve the similarity given. So, we obtain a new dissimilarity value, combining the
dissimilarity value given by the VMI and the saliency spherical registration:

D(S1, S2) = α1DVMI(S1, S2) + (1− α1)Dsaliency(S1, S2). (7.3)

We have used value α1 = 1
2 , so we are giving the same importance to both shape

dissimilarities provided by both shape descriptors, the VMI and saliency spheres.

In Figure 7.8 we show the dissimilarity map created using the combination of VMI
and saliency dissimilarities between models. In Figure 7.9 we can observe the improve-
ment of the results compared to the VMI or saliency ones. See how the first four models
obtained for each family are models belonging to the family of the target one.
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Figure 7.4.: Dissimilarity map using VMI spheres. Blue and red values correspond to
the most similar and dissimilar models respectively.

(i.a) (i.b)

(ii.a) (ii.b)

(iii.a) (iii.b)

(iv.a) (iv.b)

Figure 7.5.: Spherical registration using VMI spheres. In column (a) we show the first
model of each family and in column (b) the list of the first ten objects sorted
by its similarity with respect to the target model (a).
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Figure 7.6.: Dissimilarity map using saliency spheres. Blue and red values correspond
to the most similar and dissimilar models respectively.

(i.a) (i.b)

(ii.a) (ii.b)

(iii.a) (iii.b)

(iv.a) (iv.b)

Figure 7.7.: Spherical registration using saliency spheres. In column (a) we show the
first model of each family and in column (b) the list of the first ten objects
sorted by its similarity with respect to the target model (a).
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Figure 7.8.: Dissimilarity map combining VMI and saliency spheres registration. Blue
and red values correspond to the most similar and dissimilar models re-
spectively.

(i.a) (i.b)

(ii.a) (ii.b)

(iii.a) (iii.b)

(iv.a) (iv.b)

Figure 7.9.: Spherical registration using VMI and saliency spheres. In column (a) we
show the first model of each family and in column (b) the list of the first ten
objects sorted by its similarity with respect to the target model (a).
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8. Conclusions and Future Work

We have defined a unified framework for viewpoint selection and mesh saliency based
on an information channel between a set of viewpoints and the set of polygons of an
object. A new viewpoint quality measure, the viewpoint mutual information, has been
introduced to quantify the representativeness of a view and has been used to com-
pute viewpoint stability, to select the N best views and to explore the object. From the
reversion of the information channel, we have defined both the information and the
saliency associated with each polygon, and we have also calculated the saliency of a
viewpoint. Then, the viewpoint mutual information has been extended by incorporat-
ing the saliency as an importance factor. We have also presented a new information-
theoretic approach to ambient occlusion. Our technique is based on the reversed view-
point channel using the mutual information associated with each polygon with ap-
plications such as model enhancement (The important viewpoints can modulate the
obtained ambient occlusion values), and as a relighting technique in combination with
an NPR technique. Finally, we have made a first step in exploring the possibilities of
our information-theoretic viewpoint selection framework to quantify the shape dissim-
ilarity between 3D polygonal models. The presented approach is based on a spherical
registration process considerating the VMI and saliency spheres as shape descriptors.

There are many issues of future research worth exploring. First, we plan to ex-
tend our viewpoint framework to indoor scenes. Second, we wish to analyze how
our saliency approach can operate at multiple scales and can guide the object explo-
ration. Third, we will investigate the integration of importance (for example, obtained
from saliency or lighting) to the input distribution. Fourth, we will explore how the
best viewpoint selection can be fine-tuned with other perceptual characteristics such
as stability. Fifth, research will be addressed to investigate the quality of the ambient
occlusion obtained with generalized Tsallis-Havrda-Charvat mutual information and
to obtain a GPU implementation of our technique. Sixth, we will study how to ap-
ply our framework to obtain a Polygonal Mutual Information-based refinement criteria of
models to represent, accurately, the occlusion details while avoiding unnecessary re-
finements that would increase the computational cost. Seventh, we will explore the
use of stability spheres (see [FSG07]) as shape signatures in combination with VMI and
saliency spheres, other metrics for spherical registration and dissimilarity quantifica-
tion, numerical optimizers to speed up the registration process, several interpolators
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and different resolutions of both the viewpoint sphere and the model mesh. Finally,
we will study the creation of a 3D shape retrieval system based on the presented shape
descriptors, the VMI and saliency spheres.
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W., (Eds.).

[KL05] KONTKANEN J., LAINE S.: Ambient occlusion fields. In Proceedings of I3D
(2005).

[KV06] KIM Y., VARSHNEY A.: Saliency-guided enhancement for volume visual-
ization. IEEE Trans. Vis. Comput. Graph. 12, 5 (2006), 925–932.

[KZS96] K. ZHANG J. T. L. W., SHASHA D.: On the editing distance between un-
dericted acyclic graphs. Int’l J. Foundations of Computer Science (1996), 43–57.
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