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Jiřı́ Bittner

Czech Technical University in Prague

Vienna University of Technology

Version 1.1, August 31, 2006

c© The Eurographics Association 2006.



Havran and Bittner / Efficient Sorting and Searching in Rendering Algorithms

Abstract

In the proposed tutorial we would like to highlight the connection between rendering algorithms and sort-

ing and searching as classical problems studied in computer science. We will provide both theoretical and

empirical evidence that for many rendering techniques most time is spent by sorting and searching. In

particular we will discuss problems and solutions for visibility computation, density estimation, and im-

portance sampling. For each problem we mention its specific issues such as dimensionality of the search

domain or online versus offline searching. We will present the underlying data structures and their enhance-

ments in the context of specific rendering algorithms such as ray shooting, photon mapping, and hidden

surface removal.
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Overview 2

Content

• Introduction to Rendering

• Sorting and Searching

• Hierarchical Data Structures

• Ray Shooting

• Questions and Answers (5 minutes)

Part One

Overview 3

Content

• Hidden Surface Removal

• Visibility Culling

• Photon Maps and Irradiance Caching

• Ray Maps

• Other Algorithms

• Questions and Answers (10 minutes)

Part Two

Overview 4

Tutorial Goals

• Recall that we often use sorting and 

searching in rendering

• Highlight connections between different 

problems in rendering

• Briefly show efficient solutions

• Show unusual solutions resulting from 

twisting searching queries and domains

Overview 5

What is Not Covered Here

• Collision detection algorithms (EG’05 Tutorial)

• Image based rendering

• Radiosity

• Non-photo realistic rendering

• Clustering techniques

• Graph theory and other related problems

Updated tutorial slides available at

http://www.cgg.cvut.cz/˜havran/eg2006tut/

Havran and Bittner / Efficient Sorting and Searching in Rendering Algorithms
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Introduction to Rendering

Vlastimil Havran

Czech Technical University in Prague

Introduction to Rendering 2

Introduction to Rendering

• Rendering equation

• Rendering algorithms

• Sorting and searching in rendering

Introduction to Rendering 3

Rendering Equation

• Convolving incoming light with surface 

reflectance properties

Introduction to Rendering 4

Ray Tracing

Introduction to Rendering 5

Path Tracing

Introduction to Rendering 6

Photon Mapping
Phase I: photon shooting Phase II: gathering

Havran and Bittner / Efficient Sorting and Searching in Rendering Algorithms
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Tutorial Motivation

• Sorting and searching takes usually more than 

90% of the rendering time!

• Efficiency of sorting and searching is crucial for 

the performance

• Examples

– Ray Tracing

– Photon Density Estimation

Introduction to Rendering 8

Sorting and Searching

General Concept

Sorting

(Preprocessing)

Searching

Controlling 

Application

commands

results

data

Introduction to Rendering 9

Example 1  

Ray Tracing

Spatial Hierarchy

(Kd-Tree)

Ray Traversal

Ray Tracer

rays

intersections

objects

Introduction to Rendering 10

Example 2 

Photon Density Estimation

Photon Map

(Kd-Tree)

K-Nearest Neighbor

Search

Density 

Estimation

Method
points

photons

nearest

photons

Havran and Bittner / Efficient Sorting and Searching in Rendering Algorithms
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Introduction to 

Sorting and Searching
Ji�í Bittner

Czech Technical University in Prague

Vienna University of Technology

Introduction to Sorting and Searching 2

Searching

• Search problem 

Q x S : A

Q query domain

S search space

A domain of answers

Introduction to Sorting and Searching 3

Geometric Search Problems
Nearest Neighbors Range search

Point location Intersection detection

Q
Q

Q Q

Introduction to Sorting and Searching 4

Search Problems in Rendering

{rays}{rays}pointRay maps

{spheres}{spheres}pointIrradiance 

caching

{points}{points}pointPhoton maps

{objects}{objects}{rays}Visibility culling

{points}{objects}{rays}Hidden Surface 

Removal

point{objects}rayRay shooting

ASQProblem

Introduction to Sorting and Searching 5

Searching Algorithms

• Exact vs. Approximate

– Approximate: finds solution close to exact one

• Online vs. offline

– Offline: applied for entire sequence of Q

• Static vs. dynamic

– Dynamic: S may change

Introduction to Sorting and Searching 6

Sorting

• Organizing data

• Improve searching performance

– Naïve search: O(n) time

– With sorting: O(log n)!

– In special cases even O(1)

• We deal with multidimensional data!

– Define relations among elements of S

(objects, points, rays, normals, …) 

Havran and Bittner / Efficient Sorting and Searching in Rendering Algorithms
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Basic Sorting Algorithms

O(n2)O(n2)O(n2)SelectionSelection sort

O(n log n)O(n log n)O(n log n)MergingMerge sort

O(n2)O(n2)O(n)InsertionInsertion sort

O(n2)O(n2)O(n)ExchangingBubble sort

O(n2)O(n)O(n)DistributionBucket sort

O(n2)O(n log n)O(n log n)PartitioningQuicksort

O(n log n)O(n log n)O(n log n)SelectionHeapsort

WorstAverageBestMethodAlgorithm

Space complexity: O(n)

Introduction to Sorting and Searching 8

Sorting in Rendering

• Sort by partitioning (Quicksort like)

– Top-down construction of spatial hierarchies

• Sort by selection (Heapsort like)

– Bottom-up construction of spatial hierarchies

– k-NN search

• Sort by distribution (Bucket sort like)

– Rasterization

• Sort by exchanging (Bubble sort like)

– Incremental priority orders

Havran and Bittner / Efficient Sorting and Searching in Rendering Algorithms
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Hierarchical Data Structures

Vlastimil Havran

Czech Technical University in Prague

Hierarchical Data Structures 2

• Connection to sorting

• Classification

• Bounding volume hierarchies

• Spatial subdivisions

• Hybrid data structures

• Searching using HDS

• Special techniques on hierarchies

Hierarchical Data Structures
(HDS)

Hierarchical Data Structures 3

Hierarchical Data Structures

= tree or even a graph

root

Interior node

leaf

Hierarchical Data Structures 4

Connection to Sorting

Hierarchical Data Structures = 

implementation of (spatial) sorting

Why ?

• Time complexity is O(N log N)

• For 1D hierarchy over points the construction 

of HDS is clearly equivalent to quicksort

Hierarchical Data Structures 5

Recall Quicksort

• Pick up a pivot Q

• Organize the data into two subarrays: the 

left part smaller than pivot Q, the right part 

larger or equal than pivot Q

• Recurse in both subarrays

Hierarchical Data Structures 6

xx

xxx

xx
xxx

D

B
A x

C

x

x
x

x
x

D

B
A

x
x

C

Examples of HDS in 2D

x

x
x

xx
xx

D

B
A

x
x

C

x

x
xx

D

B
A x

C

octree kd-tree

hierarchy

of grids

bounding

volume

hierarchy

Havran and Bittner / Efficient Sorting and Searching in Rendering Algorithms
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Hierarchical Data Structures 7

HDS Classification

• Data domain organization

• Dimensionality

• Data layout

Hierarchical Data Structures 8

HDS Classification

• Spatial subdivisions – primarily organizing space 

(non-overlapping)

• Object hierarchies – primarily organizing objects 

(overlapping)

• Hybrid data structures

• Transformations and mappings

1) Data domain organization of HDS

Hierarchical Data Structures 9

HDS Classification

2) Dimensionality of HDS

• Necessary to represent data entities: 1D, 2D, 3D, 

4D, or 5D

• Data entities: points, lines, oriented half-lines, 

disks, oriented hemispheres, etc.

• Possibility to extend many problems to             

time domain (so plus one dimension)

Hierarchical Data Structures 10

HDS Classification

• Internal data structures

• External data structures (out of core)

• Cache-aware data structures

• Cache oblivious data structures

3) HDS data layout

CPU

Cache L1

Cache L2
Main

Memory

Disk

Hierarchical Data Structures 11

Types of Nodes in HDS

• An interior node represents a “pivot” –

according to it the data entities are sorted

• Typical content is a subdivision plane or a 

set of planes plus references to child nodes

• The way of interior node representation with 

respect to the task is crucial for searching 

performance

Hierarchical Data Structures 12

Spatial Subdivisions

• Non-overlapping regions of child nodes

• Space is organized by some (cutting) entities, 

typically by planes, constructed top-down

• Fully covering an original spatial region, point 

location always possible in some (empty or 

non-empty) leaf

• They are often called space partitionings             

x

x
xx
D

BA

x
x
C

kd-tree

Havran and Bittner / Efficient Sorting and Searching in Rendering Algorithms
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Spatial Subdivision Examples

• Kd-trees – axis aligned planes

• BSP-trees – arbitrary planes

• Octrees – three axis aligned planes in a node

• Uniform grids (uniform subdivision)

• Recursive grids

Hierarchical Data Structures 14

Object Hierarchies

• Possibly overlapping extents of child nodes

• Many different names - often called 

bounding volume hierarchies

• Possibly some spatial regions are not 

covered (point location impossible)

• Constructed top-down or bottom-up

• The shape represented by interior nodes 

typically a box, but other shapes as spheres 

also possible

Hierarchical Data Structures 15

Names used for Object 

Hierarchies

• Bounding Volume Hierarchies (BVHs)

• R-trees and their many variants

• Box-trees

• Several others (special sort of bounding 

volumes... sphere trees etc.)

Hierarchical Data Structures 16

Bounding Volume Hierarchies

Constructed Top-Down

Hierarchical Data Structures 17

Hybrid Data Structures

• Combining between various interior nodes

• Possibly combining between spatial 

subdivisions and object hierarchies

• Sharing pros and cons of both types

• They can be tuned to compromise of some 

properties, for example efficiency and memory 

requirements

Hierarchical Data Structures 18

Other HDS

• Content of the node – a single splitting 

plane, more splitting planes, a box, 

additional information.

• Arity of a node (branching factor)

• A way of constructing a tree (height, weight 

balancing) + postprocessing

• Data only in leaves or also in interior nodes

• Augmenting data

Havran and Bittner / Efficient Sorting and Searching in Rendering Algorithms
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Example of Other HDS

• Cell trees (polyhedral shapes for splitting)

• SKD-trees (two splitting planes at once)

• hB-trees (holey brick B-trees)

• LSD-tree (height balanced kd-tree)

• P-trees (polytope trees)

• BBD-trees (bounding box decomposition trees)

• And many others

(See the surveys listed in tutorial notes,

in particular [Samet06])

Hierarchical Data Structures 20

Transformation Approach

• Input: A spatial object in 2D or 3D domain, 

for example a box

• Output: A point in 4D or 6D domain

• More complicated mapping is possible, for 

example a sphere in 3D maps to a 4D point 

• The transform often changes the searching 

algorithm used completely

Hierarchical Data Structures 21

HDS Construction Algorithm

Top-Down, Divide and Conquer:

(1) Take a node from an auxiliary structure AS. If 

AS is empty, then we are finished.

(2) Take a set of elements in the node and decide 

if to subdivide or not. If not, create leaf, go to (1).

(3) Decide how to split the set into two (N) subsets 

and create new nodes.

(4) Put the new nodes to AS. Recurse.

Initial Phase: create a node with all elements and put it to

the auxiliary structure AS (stack or priority queue).

Hierarchical Data Structures 22

Search Algorithms using HDS

• Start from the root node

• Typically down traversal phase (location 

phase) + some other phase

• During visiting an interior node use either a 

stack (LIFO) or priority queue to record the 

nodes to be visited in future

• Compute incidence (such as ray-object 

intersection) when visiting a leaf

Note: auxiliary structure implements another 

sorting phase during searching

Hierarchical Data Structures 23

Search Algorithms using HDS
• Range queries – given a range X, find all the 

incidences of X with data

• Nearest neighbour – find a nearest neighbor

• k-nearest neighbour

• Intersection search – given a point Q, find all the 

objects that contain Q

• Ranking – given a query object Q, report on all the 

objects in order of distance from Q

• Reverse nearest neighbours – given a point Q, find 

all the points to which Q is nearest neighbour

Hierarchical Data Structures 24

Search Performance Model

• Result = the cost of computation ... C

• Performance is inverse proportional to the 

quality of the data structures for given 

problem

• The two uses of performance model

– a posteriori: documenting and testing        

performance

– a priori: constructing data structures with higher 

expected performance

Havran and Bittner / Efficient Sorting and Searching in Rendering Algorithms
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Search Performance Model

• C_T … cost of traversing the nodes of HDS

• C_L … cost of incidence operation in leaves

• C_R … Cost of accessing the data from 

internal or external memory

Typical cost model:

C = C_T + C_L + C_R 

C = C_TS * N_TS + C_LO * N_LO + C_Access * N_Access

Hierarchical Data Structures 26

HDS Dynamization

• Given changes, only update data structures to reflect 

these changes

• It is assumed that the performance of searching 

remains acceptable after update

• Dynamization can require additional bookkeeping 

data to monitor the cost/quality of a HDS node and 

the subtree associated with the node

• Techniques known for 1D trees (rotation, balancing) 

are often not applicable

• It is usually required to update larger amount of data 

at once (bulk updating)

Havran and Bittner / Efficient Sorting and Searching in Rendering Algorithms
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Ray Shooting

Vlastimil Havran

Czech Technical University in Prague

Ray Shooting 2

Ray Shooting

Find nearest intersection along a ray

{rays}{rays}pointRay maps

{spheres}{spheres}pointIrradiance 
caching

{points}{points}pointPhoton maps

{objects}{objects}{rays}Visibility culling

{points}{objects}{rays}Hidden Surface 

Removal

point{objects}rayRay shooting

ASQProblem

Ray Shooting 3

• Ray shooting versus ray tracing

• Connection to sorting and searching

• Ray shooting with kd-trees

• Performance model/studies

• Octrees, uniform grids, recursive grids

• Bounding volume hierarchies

• Offline ray shooting

Ray Shooting

Ray Shooting 4

x

Ray Shooting Algorithm (RSA)

Task: Given a ray, find out    

the first object intersected.

Input: a scene and a ray

Output: the object C

x
A

x
x
Bx
D

x
C

ray

E

Ray Shooting 5

Ray Tracing 

versus

Ray Shooting

• Ray shooting – only a single ray

• Ray tracing in computer graphics can be:

– Ray shooting (only a single ray)

– Ray casting – only primary rays from camera

– Recursive ray tracing

– Distribution ray tracing and others

Ray Shooting 6

Some Complexity Issues

Computational Geometry

– aimed at worst-case complexity

– restriction to certain class of object shape                  

(polygons, triangles)

– unacceptable memory requirements

O(log N) query time  induces :(N4) space

Computer Graphics

– aimed at average-case complexity

– practical feasibility and robustness

– implementation issues important for performance

Havran and Bittner / Efficient Sorting and Searching in Rendering Algorithms
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Ray Shooting 7

Some Complexity Results

Lower bound for worst-case complexity: 1997/98 

Laszlo Szirmay-Kalos + Gabor Marton – lower bound for   

space complexity is :(N4) for O(log N) search

Applicability of Computational Geometry 

techniques in CG for ray tracing 

– CGE techniques are not general

– limited to small number of primitives

– no implementations available 

Ray Shooting 8

Computer Graphics 

Techniques Overview
Techniques developed: aimed at practical 

applications, no complexity guarantees, many 

“tricks”, the analysis difficult or infeasible

Basic techniques: bounding volumes, spatial     

subdivision, ray classification

Basic techniques: bounding volumes, spatial     

subdivision, ray classification

Augmented techniques: macro regions, pyramid 

clipping, proximity clouds, directed safe zones

Special tricks: ray boxing, mailbox, handling 

CSG primitives, other types of coherence 

Ray Shooting 9

RSA Techniques Classification

A) Subdivision techniques (top down)

-- binary space partitioning  (kd-trees)

-- octrees

-- uniform and hierarchical grids

-- bounding volume hierarchy

B) Clustering (bottom up)

-- bounding volume hierarchy

Ray Shooting 10

xxx
xxx
xxx

xxx
xxx

xx
xx
xx

xx
xx

xx

xxx

xx
xxx

D

B
A x

C

xx
xx

xx
xx
xx
xx

xx
xx
xx
xxxxxx

xx
xx
xx

xx
xx
xx
xx

xxx
xxx
xxx
xxx
xxx x

x
x

x
x

D

B
A

x
x

C

xx
xx
xx
xxxx
xx

xx
xx
xxxx
xx
xx

Some RSA Techniques

x

x
x

xx
xx

D

B
A

x
x

C

x

x
xx

D

B
A x

C

octree kd-tree

hierarchy

of grids

bounding

volume

hierarchy

Ray Shooting 11

Kd-tree Construction

x
Axx

C

x
x
B

x
D

1 1

xx
xx

A

3

3

xx
xx

C

xx
xx

D

2

2
4

xx
xx

B

xx
xx

C

4

x

y

Ray Shooting 12

Visualisation of  Kd-tree

Havran and Bittner / Efficient Sorting and Searching in Rendering Algorithms
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RSA Techniques Comparison
30 scenes times 12 RSAs times 4 ray distribution methods  
=  1440 measurements, year 2000-2001

0

20000

40000

60000

80000

100000
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T_R

T_B + T_R

K
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O
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3
A

O
8

4
A

R
G

H
U

G

A
G

U
G

O
9

3

B
S

P

O
8

9

O
8

4

B
V

H

410000

89800
89450

66092

53350

31900

2211414760

8710
69306820

5241

Note: In test BVH constructed in bottom-up fashion !

Timings (build time, search time, total time)

Ray Shooting 14

RSA Techniques Comparison
Number of operations (ray-object intersections, traversal steps)

Note: values normalized to the worst value.

Ray Shooting 15

RSA based on Kd-tree

Construction (in O(N log N) time)

• based on cost function and geometric probability 

• automatic termination criteria algorithm

• various efficiency improvements:
– construction of kd-tree with empty spatial regions
– reducing objects’ axis-aligned bounding boxes
– preferred ray sets

Ray traversal

• in practice achieves expected O(log N) time

• robust recursive ray traversal algorithm

Quite an efficient solution used in practice

Ray Shooting 16

Geometric Probability of Ray 

Intersecting a Subdivided Box
probabilityLEFT = PLO +  PLR +  PRL

probabilityRIGHT = PRO +  PLR +  PRL

Probability computed from surface area of the box

Condition: uniform ray distribution

Ray Shooting 17

Kd-tree Construction Based on

Cost Function with Greedy Heuristics

Cost = probabilityLEFT * NLEFT + probabilityRIGHT * NRIGHT

Cost

A

B

C
D

x
x

A,B,C,D
xx
xx
xx
xx

A

x
x
B,C,D

Minimum cost

Ray Shooting 18

Left bounding box Right bounding box

Kd-tree Efficiency Improvements

Cutting off empty space

Ray

Splitting plane

Reducing objects’ axis-

aligned bounding boxes

Splitting plane
Leaf
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Ray Shooting 19

Termination Criteria 

for Construction

• Local: using a stack

– Simple local: maximum depth + number of objects

– More complicated local: a maximum number of 

cost improvement failures + maximum estimated 

depth + number of objects

• Global: using a priority queue

– maximum memory used

– maximum memory used + maximum leaf cost

Ray Shooting 20

Kd-tree Construction for 

Preferred Ray Sets
Idea: different than uniform distribution of rays, gain 2-3

U
n

if
o

rm
P

re
fe

rr
e

d

Ray Shooting 21

Recursive Ray Traversal 

Algorithm for Kd-tree

Ray Shooting 22

Interior node of 

kd-tree

Recursive Ray Traversal 

Basic Cases Classification

L R

Right only

L R

Left only

L R

Left, then right

L R

Right, then left

Ray Shooting 23

xx
xx

x
xxx

A

x
x
B

x
D

xx
xx

D

xx
xx

B

x

y

Recursive Ray Traversal 

Algorithm

kd-tree:

Stack:

xx
xx

2

R R

L R

4

ra
y

A

L R

C1

x
C

4
2

41
2

3

3

1

Intersection
foundLeft | Right

L
e
ft

 |
 R

ig
h
t

C2

Ray Shooting 24

Ray Shooting with Octrees
• Interior node arity is eight

• Up to four child nodes can be traversed 
in an interior node

• Traversal algorithm necessarily more 
complicated than for kd-tree

• About 26 papers about ray tracing with 
octrees were published

• Octrees are less adaptive to the scene 
object distributions than kd-trees

• Geometric probability can be used in the 
same way as for kd-trees (Octree-R)

• According to the experiments, octrees
are less efficient than kd-trees

xx
xx

xx
xxxx
xx

xxx
xxx
xxxxxx
xxx
xxx x

x
xx

D

B
A x

C

Note: octrees
can be 

simulated by 
kd-trees
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Ray Shooting 25

Ray Shooting with Uniform Grids

• Arity of a node proportional to the number of objects

• Traversal method based on 3D differential analyzer (3DDA)

• For skewed distributions of objects in the scene it is inefficient

• For highly and moderately uniform distributions of objects it is
slightly more efficient than kd-trees

Ray Shooting 26

Ray Shooting with Bounding 

Volume Hierarchy (BVH)

• Each interior node is fully described by a 
bounding box

• The number of child nodes is usually 
two for top-down construction (more for 
bottom-up construction)

• The nodes can overlap

• Each object is referenced only once

• The storage of a node is high … the 
memory consumption is higher than for 
kd-trees

• Traversal algorithm similar to kd-trees

• Kd-trees can be emulated by BVHs.

xx
xx
xx

xx
xx
xx

xx
xx
xx
xx
xx
xx

x
x
xx

x
xx

D

B
A x

C

Ray Shooting 27

Data Layout in Memory
Inorder, preorder (depth-first-search), heap 

(bread-first-search), van Emde Boas

Depth-first-search (DFS) Van Emde Boas

Needs rewritingBy standard memory allocator

Ray Shooting 28

Performance Model of 

Ray Shooting

• Faster ray-object intersection tests 

• Decreasing number of ray-object intersection tests

• Faster traversal step

• Decreasing number of traversal steps

• Reducing CPU-memory traffic

Total cost for RSA = 

cost for ray-object intersection tests  + 

cost for ray traversal of kd-tree + 

cost for data move from memory to CPU

Ray Shooting 29

Offline Ray Shooting
• Shooting several rays at once

• Rays are formed by camera, by viewing frustum 

or by point light sources

• Rays are coherent = similar in direction and 

origin

• Problem can be formulated as offline setting of 

searching

• We can amortize the cost of traversal operations 

though the data structure … the number of 

traversal steps is decreased typically by 60-70%

• Solving by LCTS – longest common traversal 

sequence
Ray Shooting 30

Offline Ray Shooting: Coherence

• If boundary rays traverse the same sequence S of 

leaves, then all rays in between also traverse the 

same sequence.

• Proof by convexity (convex leaves, convex shaft)
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Ray Shooting 31

R2:

R1:

Offline Ray Shooting in 

HDS: Principle

x
Axx

C

x
x
B

x
D

1

2

3

x

y

x
x
B

2

1

A

3

1

xx
xx

B

3

xx
xx

C

2

xx
xx

A

xx
xx

D

x
x
B

2

1

3

xx
xx

A

R1

R2

Ray origin

Ray Shooting 32

SLCTS +  two dimensions:

SLCTS

SLCTS +  scanline:

SLCTS SLCTS 

SLCTS

Hidden surface removal based on LCTS concept 

in one or two dimensions.

1 3 4 2 6 7 5 1

3 4

26

7

5

8 9

10 11 12

13

14

15 16

17 18 19

20 21 22

Sampling in Image Space 

Other schemes: hierarchical image sampling

Ray Shooting 33

Traversal History for R1:

head

Simple LCTS  = 

Sequence  of  Leaves

R1, R2:

x
x

A

xx
xx

C

x
x
B

x
D

1

2

3

x

y

xx
xx

B

2

1

3

xx
xx

A

R1

R2

Ray origin

SLCTS(R1, R2):

xx
xx

B

head

x
x
B

x
x
A

tail

Traversal History for R2:

x
x
B

xx
xx

A

x
x
A

tail

head

xx
xx tail

Ray Shooting 34

;

x
A x

C

x
x
B

x
D

1

3

2

4

x

y

R1

R2

Simple LCTS - Problems

1) No common sequence of leaves exists.

2) When accessing SLCTS, object was not    

found, and traversal has to continue further.

R1

R2

x

y

x
A x

C

xx
xx

B

x
D

1

3

4

2

Ray Shooting 35

Hierarchical  LCTS

Traversal History for R2:

Traversal History for R1:x
Axx

C

x
x
B

x
D

1

2

3

x

y

R1

R2

Ray origin

1

x
x
B

3

xx
xx

C

2

xx
xx

A

xx
xx

Dx
x
BC

1(R,L)

x
x
D

3(R,L)2(L)

xx
xx

BA

1(R,L)

x
x
D

3(R,L)2(R)

Ray Shooting 36

Traversal History for R2:

x
x

Traversal History for R1:

Common Traversal History 
for all rays between R1 and R2:

=  HLCTS(R1, R2):

Hierarchical  LCTS contd.

xx
xx

A

1(R,L)

xx
xx3(R,L)2(R)

1

x
x
B

3

x
x
C

2

xx
xx

A

xx
xx

D

head

xx
xx

D

xx
xx

B

tail

2(?)

x
x

C

1(R,L)

3(R,L)2(L)

D

DB

B

Matching two traversal histories into common one:
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Ray Shooting 37

Hierarchical  LCTS contd.

1) Matching traversal histories for two or more rays.

2) Matching traversal histories for rays with the 

previously constructed common traversal history.

R1

R2

HLCTS1

R3
HLCTS2

HLCTS1  - constructed  from 

traversal history of R1 and R2

HLCTS2  - constructed  from 

HLCTS1 and 

traversal history of R3

Ray R3 - traversal uses HLCTS1

Ray Shooting 38

Ray Cache in Final Gathering
• Store the rays into cache according to direction

• When a bucket is filled in, shoot all of them at once

• Improves access pattern for incoherent queries

• Speedup up to 30%

Ray Shooting 39

Surveys on Ray Shooting and 

Ray Tracing

• G. Simiakakis: Accelerating Ray Tracing with 

Directional Subdivision and Parallel 

Processing, 1995

• V. Havran: Heuristics Ray Shooting 

Algorithms, 2001

• I. Wald: Real Time Ray Tracing and Global 

Illumination, 2004

• A. Y-H. Chang: Theoretical and Experimental 

Aspects of  Ray Shooting, 2005

Ray Shooting 40

Questions and Answers for 

Part One
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Part 2 - Content

• Hidden Surface Removal

• Visibility Culling

• Photon Maps and Irradiance Caching

• Ray Maps

• Other Algorithms 

• Questions and Answers (10 minutes)

2

Hidden Surface Removal

Ji�í Bittner

Czech Technical University in Prague

Vienna University of Technology

Hidden Surface Removal 3

Hidden Surface Removal

Find visible surface for every pixel (ray)

{rays}{rays}pointRay maps

{spheres}{spheres}pointIrradiance 

caching

{points}{points}pointPhoton maps

{objects}{objects}{rays}Visibility culling

{points}{objects}{rays}Hidden Surface 
Removal

point{objects}rayRay shooting

ASQProblem

Hidden Surface Removal 4

Hidden Surface Removal

• List priority algorithms

• Area subdivision algorithms

• Scan-line algorithms

• Z-buffer

• Ray casting

Hidden Surface Removal 5

Depth Sort

• Draw faces back to front [Newell72]

• Overwrite the farther ones (painter’s alg.)

• Determine strict depth order

– Resolve cycles of overlaping polygons

• Step 1: depth sort (Z)

– Quick sort, bubble-sort (temporal coherence)

• Step 2: rasterization (YX)

– Bucket sort to pixels

Hidden Surface Removal 6

Depth Sort with BSP Tree

• BSP built in preprocess

– Select a plane

– Partition the polygons in 

front/back fragments

– If >1 polygon : recurse

• Quick-sort like

• Heuristics for splitting-plane selection

A

viewpoint

A2

A1 B

C

D
E

F
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Hidden Surface Removal 7

Depth Sort with BSP Tree

• Tree size: O(n2)

• Run-time: simple traversal

• Improvements

– BSP need not be autopartition!

– For manifolds depth order can be predetermined 

: coarser BSP

– Generalization to all BSP nodes 

‘Feudal priority tree’ [Chen96]

− +

− +

C

D

F

E

B

order: F,E,D,C,A2,B,A1

−

−

A2

A1

Hidden Surface Removal 8

Area Subdivision

• Subdivide screen space 
[Warnock69]

• Classify polygons with 
respect to the area

• Terminate if trivial solution

• Step 1: octree subdivision (XY)

– Quick sort like

• Step 2: list for octree nodes (Z)

– Insertion sort

I

S

I

I

S

S

DI1

2

3

4

I

4

1

2

3

Hidden Surface Removal 9

Naylor’s BSP projection

• Draw polygons front to back

• Clip polygons by 2D BSP of projected 

polygons

• Step 1: depth sort (Z)

– 3D BSP built in preprocess

• Step 2: 2D BSP (XY)

– Quick sort like subdivision 

of the projection plane

Hidden Surface Removal 10

Scan-Line

• Sort by scan-lines (Y)

• Sort spans within a scanline (X)

• Search for closest span (Z)

• [Watkins70]

– Bubble sort in X and Y

– O(log n) search in Z

Hidden Surface Removal 11

Z-buffer

• Rasterize polygons in arbitrary order

• Maintain per pixel depths

• Step 1: rasterization (YX)

– Bucket sort like

• Step 2: per pixel depth comparison (Z)

– Min selection

Hidden Surface Removal 12

Ray Casting

• Cast ray for each pixel

• Step 1: spatial data structure (XYZ)

– Preprocess

– Trees ~ quick sort

– Grid ~ distribution sort

• Step 2: search for 

nearest intersection

– Min selection with 

early termination
viewport

Havran and Bittner / Efficient Sorting and Searching in Rendering Algorithms
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Hidden Surface Removal 13

Z-buffer vs. Ray Casting

yes +yes   -no    -Ray casting

no   -no    +yes  +Z-buffer

output 

sensitive

presortingscan-line

coherence

• Z-buffer better in simple sparsely occluded 

dynamic scenes

• Ray casting better in complex densely 

occluded static scenes

Hidden Surface Removal 14

Summary

• HSR

– Search for closest object for every pixel (ray)

• HSR algorithms sort in

– Directions (XY)

– Depth (Z)

– Differ in sorting order and methods [Suth74]

• Current winners: z-buffer, ray casting
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Visibility Culling

Ji�í Bittner

Czech Technical University in Prague

Vienna University of Technology

Visibility Culling 2

Visibility Culling

Find visible objects for a given view point or view cell

{rays}{rays}pointRay maps

{spheres}{spheres}pointIrradiance 

caching

{points}{points}pointPhoton maps

{objects}{objects}{rays}Visibility culling

{points}{objects}{rays}Hidden Surface 

Removal

point{objects}rayRay shooting

ASQProblem

Visibility Culling 3

Visibility Culling – Motivation

• Q: Why visibility culling, when:

– Object outside screen culled by HW clipping

– Occluded objects culled by z-buffer 

• A: Linear complexity not sufficient!

– Processing too many invisible polygons

• Goal

– Render only what can be seen!

– Make z-buffer output sensitive

Visibility Culling 4

Visibility Culling - Introduction

• Online

– Applied for every view point at runtime

• Offline 

– Partition view space into view cells

– Compute Potentially Visible Sets (PVS)

Visibility Culling 5

Online Visibility Culling

• For every frame cull whole groups of invisible 

polygons

• Conservative solution

– Determines a superset of visible polygons

– Precise visibility solved by z-buffer

Visibility Culling 6

Online Visibility Culling

• View-frustum culling

• Occlusion culling

– CPU techniques

– GPU based (HW occlussion queries)

Havran and Bittner / Efficient Sorting and Searching in Rendering Algorithms
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Visibility Culling 7

Backface Culling

• Culls about 50% polygons

• Supported by the GPU

• Alternative: Hierarchical back-face culling 

[Kummar96]

– Sort polygons based on their normals into a tree

– Skip whole groups of backfacing polygons

Visibility Culling 8

Hierarchical Backface Culling

• Properties

+ Skips whole groups of polygons

- Regroups the scene (discards objects)

- Limited gain

Visibility Culling 9

View Frustum Culling

• Culls 0-100% polygons

• Objects intersecting the view frustum

• Hierarchical VFC

– Spatial hierarchy: kD-tree, BSP tree, octree, BVH

– Intersection tests on hierarchy nodes

• Optimizations

– Temporal coherence

– Efficient intersection test [Assarson00]

Visibility Culling 10

View Frustum Culling - Example

Visibility Culling 11

Occlusion Culling
• VFC disregards occlusion

• 99% of scene can be occluded!

• Solution: Detect and cull also occluded objects

Visibility Culling 12

Shadow Frusta

• Construct shadow frusta for several occluders

[Hudson97]

• Object is invisible if inside a shadow frustum

• Queries on the spatial hierarchy

Havran and Bittner / Efficient Sorting and Searching in Rendering Algorithms
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Visibility Culling 13

Shadow Frusta - Properties

• Properties

+ Easy implementation

- No occluder sorting

- No occluder fusion!

- O(n) query time

- Small number of 

occluders

Visibility Culling 14

Occlusion Trees

• Occluders sorted into a 2D BSP tree [Bitt98]

• Occlusion tree represents fused occlusion

• Example: occlusion tree for 3 occluders

Visibility Culling 15

Occlusion Tree - Traversal

• Visibility test of a node

– Depth-first-search

– Found empty leaf o tested object is visible

– Depth test in filled leaves

• Example of final visibility

classification of kD-tree

visible

culled by VFC

invisible

viewpoint

view frustum

partially visible
Visibility Culling 16

Occlusion Tree - Properties

• Presorting occluders

– Tree size: worst case O(n2), n = #occluders

– O(log n) visibility test

+ Allows to use more occluders (~100)

- Not usable for scenes with small polygons

Visibility Culling 17

Hierarchical Z-buffer

• Extension of z-buffer to quickly cull larger 

objects [Greene 96]

• Ideas

– octree for spatial scene sorting 

– z-pyramid for accelerated depth test

Visibility Culling 18

Hierarchical Z-buffer - Example
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Visibility Culling 19

Hierarchical Z-buffer - Usage

• Hierarchical test for octree nodes

• Find smallest node of z-pyramid, which 

contains the tested box

• Box depth > node depth o cull

• Otherwise: recurse to lower z-pyramid level

• Optimization: use temporal coherence

– z-pyramid constructed from polygons visible in the 

last frame

Visibility Culling 20

Hierarchal Occlusion Maps

• Hierarchical occlusion maps 

[Zhang97]

• Pyramid of occlusion maps

• Separate occlusion and 

depth representation

– Hierarchical occlusion

– Coarse depth

• Queries on spatial hierarchy 

estimated depth

z

Visibility Culling 21

HW Occlusion Queries

• ARB_occlusion_query, NV_occlusion_query

• Return #pixels passing the depth test

• Feature which has been missing!

• Issues

1. Latency – the result not readily available

2. The query costs time

Visibility Culling 22

Rx Render object x

Qx Query object x

Cx Cull object x

CPU

GPU

CPU Stalls GPU Starvation

R1 Q2

R1 Q2

R2 Q3

R2 Q3

C3 Q4

Q4

R4

R4

time

Waiting time

Visibility Culling 23

Coherent Hierarchical Culling

• CHC [Bitt04]

– Interleave queries and rendering

– Schedule queries based on temporal coherence

1011

76

5

8

1

29

3

4

5

7 6 8

1011

12 13

front-to-back

order

assume no query

dependencies

no queries for previously

visible interior nodes

hidden regions: queries

depend on parents Visibility Culling 24

CHC

Rx Render object x

Qx Query object x

Cx Cull object x

CPU R1 Q2

GPU R1 Q2

R2 Q3

R2 Q3

C3 Q4

Q4

R4

R4

time
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CHC

• Video

• UNC power plant, 12.7M polygons

Visibility Culling 26

Cells and Portals

• Partition the scene in cells and portals

– Cells ~rooms

– Portals ~ doors&windows

• Cell adjacency graph

• Constrained search

– Portal visibility test [Luebke 96]

Visibility Culling 27

Portal Visibility Test

• Intersection of bounding rectangles of portals

Visibility Culling 28

Cells and Portals Example

A

D

H

FCB

E

G

H

B C D F G

EA

• Viewpoint in cell E

Visibility Culling 29

Cells and Portals - Example

A

D

H

FCB

E

G

H

B C D F G

EA

• Adjacent cells DFG

Visibility Culling 30

Cells and Portals - Example

• Cell A visible through portals E/D+D/A

A

D

H

FCB

E

G

H

B C D F G

EA
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Cells and Portals - Example

• Cell H not visible through portals E/D+D/H

A

D

H

FCB

E

G

H

B C D F G

EA

X

XX

Visibility Culling 32

Cells and Portals - Example

• C not visible through portals E/D+D/A+A/C

A

D

H

FCB

E

G

H

B C D F G

EA

X

XX

Visibility Culling 33

Cells and Portals - Example

• H not visible through portals E/G+G/H

A

D

H

FCB

E

G

H

B C D F G

EA

X

XX

Visibility Culling 34

Visibility Preprocessing

• Preprocessing

– Subdivide view space into view cells

– Compute Potentially Visible Sets (PVS)

– Solves visibility “offline” for all possible view 

points

• Usage

1. Find the view cell (point location)

2. Render the associated PVS

Visibility Culling 35

Visibility Preprocessing

• Other benefits

– Prefetching for out-of-core/network walkthroughs

– Communication in multi-user environments

• Problems

– Costly computation (treats all view points and view 

directions)

– PVS storage

Visibility Culling 36

Interiors – Cells and Portals

• Subdivide the scene into cells and portals

• Constrained DFS on the adjacency graph 

– Portal visibility test

• More complex than the online algorithm

– We do not have a view point!
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Interiors – Cells and Portals

• Sampling [Airey90]

– Random rays

– Non-occluded ray : terminate

+ Simple implementation

- Approximate solution

Visibility Culling 38

Interiors – Cells and Portals

• Exact computation [Teller 92]

– Mapping to 5D (Plücker coordinates of lines)

• Portal edges o hyperplanes Hi in 5D

• Halfspace intersection in 5D

Visibility Culling 39

General Scenes - Strong Occlusion

• Occlusion by single object [CohenOr98]

• For each cell and object

– Cast rays defining convex hull of the cell and 

object

– If a convex occluder intersects all rays : invisible

Visibility Culling 40

General Scenes - Strong Occlusion

• Properties

+ Simple

- No occluder fusion (no occluder sorting)

- Too conservative for larger view cells and small 

objects

Visibility Culling 41

General Scenes

Occlusion Tree

• Extension of the 2D occlusion tree

• 5D BSP tree

– Plücker coordinates of lines

• The tree represents union of occluded rays

Visibility Culling 42

General Scenes 

Occlusion Tree

• Process polygons in front-to-back order

• Polygon visible o enlarge tree by visible rays 

• Polygon invisible o tree not modified
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• Properties

+ Exact solution

+ Uses visibility coherence

- Difficult implementation

General Scenes

Occlusion Tree

Visibility Culling 44

2.5D Scenes

Occluder Shadows

• Footprint of occluded volume [Wonka00]

– Agrregates the shadow polygons using z-buffer

– Represents intersection of all ‘shadows’

Visibility Culling 45

2.5D Scenes

Occluder Shadows

• Conservative solution

– Shrinking occluder polygons 

• Properties

+ Relatively easy implementation

+ Uses GPU

- Large view cells o more conservative solution

- Needs high resolution cull map

Visibility Culling 46

2.5D Scenes

Ray Space Factorization

• Main ideas [Leyvand et al. 2003]

– Occluder in 2.5D o 3D polygon in ray space

– Polygon shape: defined by 2D footprint

– Polygon depth: defined by heights

Visibility Culling 47

2.5D Scenes

Ray Space Factorization
• Render polygons using z-buffer

• Visible polygons in ray space : visible objects in 
primal space

• Properties
- Conservative solution

+ GPU implementation
Visibility Culling 48

2.5D Scenes

Occlusion Tree + Virtual Portals

• Occlusion tree for visibility in 2D footprint

• Identifies sequencies of occluders

• Construct virtual portals over the occluders

• Portal visibility test in 5D [Teller 92]

View cell

Tested

occluder
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2.5D Scenes

Occlusion Tree + Virtual Portals

• Properties

+ exact solution for 2.5D scenes

+ computation time comparable with conservative 

methods 

- difficult implementation

Visibility Culling 50

Visibility Culling - Summary

• Find visible objects for a view point or view cell

• Heavy use of spatial sorting 

– Common HDS: kD-tree, octree, BVH

• Occlusion culling differs in occluder sorting

– No sorting, occlussion trees, HOM, cells + portals

• Online vs. offline culling

– Online: dynamic scenes

– Offline: very fast at runtime for static scenes

Visibility Culling 51

Surveys on Visibility

• F. Durand. 3D Visibility: Analytical Study and 

Applications, 1999.

• D. Cohen-Or et al.: A survey of visibility for 

walkthrough applications, 2003.

• J. Bittner and P. Wonka: Visibility in computer 

graphics, 2003.
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Photon Maps and 

Irradiance Caching

Vlastimil Havran

Czech Technical University in Prague

Photon Maps and Irradiance Caching 2

Photon Maps and

Irradiance Caching

• Final gathering versus direct visualization

• Photon maps

• Irradiance caching

• Offline techniques

Photon Maps and Irradiance Caching 3

Photon Maps

Find nearest photons given a point

{rays}{rays}pointRay maps

{spheres}{spheres}pointIrradiance 

caching

{points}{points}pointPhoton maps

{objects}{objects}{rays}Visibility culling

{points}{objects}{rays}Hidden Surface 

Removal

point{objects}rayRay shooting

ASQProblem

Photon Maps and Irradiance Caching 4

Photon Mapping

Photon Maps and Irradiance Caching 5

Final Gathering
• Shooting many secondary rays (possibly according 

to BRDF), gathering radiances from the rays

• Integrating the radiances properly to render image

• Used for indirect diffuse illumination

N

Photon Maps and Irradiance Caching 6

Direct Visualization
• Do not shoot final gather rays, use directly visible 

photons from camera

• It is prone to artifacts on object boundaries 

referred to as bias

N

• Used for indirect 

specular illumination 

(caustics)
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Example of Direct Visualization

Photon Hits Direct Visualization

Photon Maps and Irradiance Caching 8

Estimating Radiance along 

Final Gather Ray
• Using the density estimation, from the photon 

hits estimating PDF

• It requires K nearest neighbor searching for 

each final gather ray

• The number of final gather rays (the number of 

searches) is enormous

• Typically we shoot 200-4000 final gather rays 

per pixel

• The number of pixels per image 1-6 x 106

Photon Maps and Irradiance Caching 9

Intro to Density Estimation

• Histogram method – take hits into buckets

• Kernel density estimation

• K-Nearest neighbors estimator

• Variable kernel density estimator

• Multiple pass methods

– First pass – pilot estimate

– Second pass – final estimate

Photon Maps and Irradiance Caching 10

Example: Density Estimation in1D

Note: Importance Sampling: from given 

p(x) to samples

Density Estimation: from samples to p(x) …

more complicated

Photon Maps and Irradiance Caching 11

Kernel Types

• High efficiency

• Simple formula

Uniform Epanechnikov

Hat

Gaussian
Biweight

Photon Maps and Irradiance Caching 12

Relation to Searching

• Range search – given a fixed range query 

(sphere, ellipsoid), find all the photons in the 

range

• K nearest neighbor search – given a center of 

the expanding shape X (sphere, ellipsoid), find 

K nearest photons

– Without considering the direction of incoming 

photons

– With considering only valid photons with respect to 

the normal at point X

Havran and Bittner / Efficient Sorting and Searching in Rendering Algorithms

c© The Eurographics Association 2006. 35



Photon Maps and Irradiance Caching 13

Search Techniques
• Use any data structures described in the section 

“Hierarchical Data Structures”

• Typically kd-trees or kd-B-trees are used

Kd-tree Kd-B-tree

Photon Maps and Irradiance Caching 14

Data Layout in Memory

Inorder, preorder (depth-first-search), heap 

(bread-first-search), van Emde Boas

Depth-first-search (DFS) Van Emde Boas

Needs rewritingBy standard memory allocator

Photon Maps and Irradiance Caching 15

KD-tree Layout in Memory

(BFS)

(DFS)

Photon Maps and Irradiance Caching 16

Practical yet Efficient Solution

• Use Kd-B-trees

• Construct a tree over an array of photons

• Use 8 Bytes nodes – good packing

• DFS or van Emde Boas Layout

• Sliding mid-point rule = spatial median + shift to 

nearest photon if one side empty

• One leaf contains a range of 30-70 photons (two 

indices to photon array)

• Properties:

– fast construction time

– fast search (complexity proved to be optimal)

Photon Maps and Irradiance Caching 17

Aggregate Searching 

(= Offline Search)

Photon Maps and Irradiance Caching 18

Searching Tricks for k-NN Search

• Do not use uniform grids, they do not work 

efficiently for skewed distributions

• Try to avoid a priority queue by using a fixed 

radius search, where the radius is estimated for 

given N (from already computed queries or the 

diagonal of a leaf box)

• Use offline search if possible

• Try to change the role of input data to be queried 

and queries

Havran and Bittner / Efficient Sorting and Searching in Rendering Algorithms

c© The Eurographics Association 2006. 36



Photon Maps and Irradiance Caching 19

Reverse Photon Mapping

Normal Photon Mapping

(gathering energy)

Reverse Photon Mapping 

(splatting energy)

r – ends of final gather rays (in black)

p – photons (in red)

Photon Maps and Irradiance Caching 20

Why Does It Work Faster ?

Assume that the number of interactions among photons 

and final gather rays is the same !

Traditional Photon Mapping – a single tree

• Many searches (~109) in a small tree over photons (~106)

• kNN search based on the photon density

Reverse Photon Mapping – more involved (two trees)

• Smaller number of  searches (~106) in a larger tree over the ends of 

final gather rays (~up to 109)

• k-NN search is also based on the photon density

Properties

• Search in a tree is logarithmic, reverse photon mapping then faster

• Reverse photon mapping takes more memory

Photon Maps and Irradiance Caching 21

Time Complexity Formulas

• F … number of final gather rays

• K … number of neighbors for kNN search

• V … number of photons

• F * K … number of interactions photon-final gather ray

Traditional Photon Mapping Time:

C_PT = C_1 * F * K + C_2 * F * log V

Reverse Photon      Mapping Time:

C_RPT = C_1 * F * K + C_2 * V * log F

For F >> V it is easy to show that F * log V > V * log F
Photon Maps and Irradiance Caching 22

Data Flow + Data Structure View

Photon Maps and Irradiance Caching 23

Irradiance Caching

Find all spheres containing a given point

{rays}{rays}pointRay maps

{spheres}{spheres}pointIrradiance 

caching

{points}{points}pointPhoton maps

{objects}{objects}{rays}Visibility culling

{points}{objects}{rays}Hidden Surface 

Removal

point{objects}rayRay shooting

ASQProblem

24

Radiance and Irradiance Caching

Scene
Radiance

Cache

p1

Radiance 

cache 

lookup

Cache

Miss!

Sample

hemisphere
Project onto 

(hemi)spherical

harmonics

p1

Store in

cache

Lo=� · BRDF(p1) · cos � d&Lo(p1)

p2

Radiance

cache

lookup

Lo(p2)=� · BRDF(p2) · cos � d&Lo(P2)
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Data Structures for Caching

• Red – data in the cache

• Black – queries
Photon Maps and Irradiance Caching 26

Search Specification

• Records – the irradiance specified by a 

point and radius of influence

• Query: given a point, find all the sphere in 

which the point is contained

• Problem is intersection search

• Data structures should be dynamic –

insertion and deletion is possible

Photon Maps and Irradiance Caching 27

1) Using Octree (Ward et al. 88)

Photon Maps and Irradiance Caching 28

2) Using Mapping to R4

• A sphere (a,b,c,r) in R3 as a point in R4

(t1,t2,t3,t4) by linearization: 

(2.a, 2.b, 2.c, a*a + b*b + c*c - r*r)

• Query: a point (a, b, c) in R3 as a hyper-plane in 

R4 (t1,t2,t3,t4) as follows:

H: a*t1+b*t2+c*t3-t4 –(a*a+b*b+c*c) > 0

• Compute half-space range reporting in R4 space, 

it requires a spatial data structure in R4

• Efficiency depends highly on

– Position of points with respect to the space origin

– Efficiency of half-space range reporting

Photon Maps and Irradiance Caching 29

Irradiance Caching Records

Photon Maps and Irradiance Caching 30

Positions of Samples in 

Radiance Cache – Final Image
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Radiance Caching Records
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Ray Maps 2

Ray Maps

Problem: Find nearest rays for a given point

{rays}{rays}pointRay maps

{spheres}{spheres}pointIrradiance 

caching

{points}{points}pointPhoton maps

{objects}{objects}{rays}Visibility culling

{points}{objects}{rays}Hidden Surface 

Removal

point{objects}rayRay shooting

ASQProblem

Ray Maps 3

Ray Maps

• Ray map: data structure sorting rays

• Allows efficient searching for rays

– nearest to a point (k-NN)

– intersecting a disc/sphere/hemisphere

• Main application:

improved density estimation

Ray Maps 4

Density Estimation

• Problems with photon maps
1.Boundary bias 

2.Topological bias

3.Proximity bias

• Ray maps 
eliminate 1. and reduce 2.

Ray Maps 5

Ray Map Queries

• Queries types

– intersection search

– k-NN search

• Query domains

– disc

– sphere

– hemisphere

– axis-aligned box

+ possible limitation on ray directions

Ray Maps 6

Metrics for k-NN Search

• Distance on the tangent plane

• Distance to the ray segment

• Distance to the supporting line of the ray
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Ray Map Implementation

• Kd-tree

• Leaves store references to the rays

• Lazy construction driven by the queries

• Support efficient searching and updating

Ray Maps 8

Construction

• Spatial median split

• Subdivide if #rays > budget 

• Classify rays back, front, both

• Termination criteria

– #ray references per leaf (~32)

– size of the leaf (~0.1% of the scene box)

– max tree depth (~30)

Ray Maps 9

Searching

• Intersection search

– Locate all leaves containing query domain

– Gather rays

– Compute intersections

• k-NN search

– Priority queue 

– Locate the leaf containing the query origin

– If #rays < N get next node from the queue

Ray Maps 10

Maintenance

• Deleting a ray

– Ray cast and remove references

• Adding a ray

– Ray cast and subdivide if required

• Keeping memory budget

– Collapsing of unused subtree nodes

– Least-recently-used strategy

Ray Maps 11

Optimization 1

Exploiting Query Coherence

• Subsequent queries often coherent

• Store traversed nodes of the previous query

• Initiate the priority queue with the saved nodes

• Top-down traversal is reduced

Ray Maps 12

Optimization 2

Directional Splits

• Queries are oriented

• Many rays in the opposite direction after reflection

• Optimization: inserting directional nodes
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k-NN Search with Ray Maps

• 1M – 2.5M rays

• Typical memory usage: 16 – 128MB

• Query time (500-NN): 0.2–1.5ms (3.2GHz PC)

• ~ 2 - 5 times slower than photon maps

Ray Maps 14

Comparison with 

Photon Maps

Comparison with 

Photon Maps
Photon maps 

Photon maps 

+ convex hull

Ray maps 

1,000,000 photons, 500-NN

Ray Maps 15

Similar Data Structures

• Ray cache [Lastra02]

– Hierarchy of spheres

• Volumetric ray density estimation 

[VanHaevre04]

– Octree

– Simulation of plant growth

Ray Maps 16

Ray Maps in Line Space

• Idea

– Ray : 5D point (Plücker coordinates)

– Query : 5D polyhedron

– Report all points in the polyhedron

– Use 5D kD-tree to sort points

• Poor performance

– Culling only at very bottom of the tree

– 5D boxes not separate well from the query 

polyhedron

Ray Maps 17

Ray Maps - Summary

• Sorting rays + efficient searching

• Kd-tree implementation

+ Simple implementation

+ Efficient memory usage control

• Density estimation

+ New query domains + new metrics

+ Elimination of boundary bias

+ Reduction of topological bias

- 2-5x slower than photon maps
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Other Algorithms 2

Other Algorithms

• Importance sampling

• Hierarchies over light sources

• Extensions to ray tracing

• Some other techniques

Note: this list on sorting and searching in 

rendering is definitely not complete !

Other Algorithms 3

Importance Sampling

CDF(f(x))

f(x) Importance Sampling: 

from given p(x) to samples

Step 1: compute 

cumulative distribution 

function into a table

Step 2: via uniform 

distribution over CDF 

generate required 

distribution f(x)

Other Algorithms 4

Importance Sampling Transforms

• Results: samples on the hemisphere (2D domain)

• Usage: for BRDF and environment maps

• Realization: using four mappings

• Properties: bijectivity, continuity in both directions, 

low distortion

• Complexity of sampling: O( (log N) * (log M) )

Havran et al. 03c: Goniometric Diagram Mapping for Hemisphere

Other Algorithms 5

Hierarchies over Light Sources
• Another hierarchy (=sorting) if number of light 

sources is high, approximating or discarding less 

important light sources

• Papers:
– Ward92: Adaptive Shadow Testing, discard less 

important contributions, avoid shadow rays testing

– Lazanyi and Szirmay-Kalos 04: Speeding up the Virtual 
Light Sources Algorithm

– Paquette et al. 98: A Light Hierarchy for Fast Rendering 
of Scenes with Many Lights

– Walter et a. 05: Lightcuts: a scalable approach to 
illumination

– Walter et al. 06: Multidimensional lightcuts
Other Algorithms 6

Extensions to Ray Tracing

• Spatio-temporal domain
– Continuous setting (Glassner 88)

– Multiframe ray tracing (discrete time setting) 
(Havran et al. 03b)

– Reprojection for walkthroughs (Havran et al. 03a)

• Approximate ray tracing
– Szirmay-Kalos et al.: Approximate Ray-Tracing 

on the GPU with Distance Impostors (2005)

• Fast construction or update for animations
– Several algorithms proposed in 2005, not yet 

resolved issue
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Some Other Techniques
• Temporal Photon Mapping and Spatio-Temporal Density 

Estimation

– Cammarano and Jensen 02: Time Dependent Photon Mapping

– Weber et al. 2004: Spatio-Temporal Photon Density Estimation Using 

Bilateral Filtering 

• Reordering the queries for photon mapping
– Havran et al. 05: Reverse Photon Mapping

– Steinhurst et al. 05: Reordering for Cache Conscious Photon 

Mapping

• Changing the role of queries and input data to be 

queried
– Havran et al. 05: Reverse Photon Mapping (here in the slides)

– Laine and Aila 05: Hierarchical Penumbra Casting

Other Algorithms 8

Remainder and Question

• This list on the use of sorting and searching in 

rendering algorithms is definitely not complete!

• Are you convinced now that sorting and 

searching is really relevant to rendering?

Other Algorithms 9

Content

• Introduction to Rendering

• Sorting and Searching

• Hierarchical Data Structures

• Ray Shooting

• Questions and Answers

Part One

Other Algorithms 10

Content

• Hidden Surface Removal

• Visibility Culling

• Photon Maps and Irradiance Caching

• Ray Maps

• Other Algorithms

• Questions and Answers

Part Two

Other Algorithms 11

Questions and Answers for 

Part Two

Havran and Bittner / Efficient Sorting and Searching in Rendering Algorithms

c© The Eurographics Association 2006. 44



Havran and Bittner / Efficient Sorting and Searching in Rendering Algorithms

References

This section contains selected publications on rendering which use and discuss (either directly or indirectly)

sorting and/or searching algorithms. The list of references consists of several parts, which correspond to

the topics discussed in tutorial.
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[Assa00] U. Assarsson and T. Möller. Optimized View Frustum Culling Algorithms for Bounding

Boxes. Journal of Graphics Tools, Vol. 5, No. 1, pp. 9–22, 2000.
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