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Viewpoint selection is an emerging area in computer graphics with applications in fields such
as scene exploration, image-based modeling, and volume visualization. In particular, best view
selection algorithms are used to obtain the minimum number of views (or images) in order to
understand or model an object or scene better. In this paper, we present a unified framework for
viewpoint selection and mesh saliency based on the definition of an information channel between
a set of viewpoints (input) and the set of polygons of an object (output). The mutual information
of this channel is shown to be a powerful tool to deal with viewpoint selection, viewpoint stability,
object exploration and viewpoint-based saliency. In addition, viewpoint mutual information is
extended using saliency as an importance factor, showing how perceptual criteria can be incorpo-
rated to our method. Although we use a sphere of viewpoints around an object, our framework is
also valid for any set of viewpoints in a closed scene. A number of experiments demonstrate the
robustness of our approach and the good behavior of the proposed measures.

Categories and Subject Descriptors: I.3.7 [Computer Graphics]: Three-Dimensional Graphics
and Realism

General Terms: Algorithms, Human Factors, Experimentation

Additional Key Words and Phrases: Viewpoint selection, mesh saliency, visual perception, infor-
mation theory

1. INTRODUCTION

In computer graphics, several viewpoint quality measures have been applied in ar-
eas such as scene understanding [Plemenos and Benayada 1996; Vázquez et al.
2001; Polonsky et al. 2005], scene exploration [Andújar et al. 2004; Sokolov et al.
2006], image-based modeling [Vázquez et al. 2003], and volume visualization [Bor-
doloi and Shen 2005; Takahashi et al. 2005; Viola et al. 2006]. In other areas,
such as object recognition and mobile robotics, best view selection is also a fun-
damental task. Many works have demonstrated that the recognition process is
view-dependent [Palmer et al. 1981; Bülthoff et al. 1995; Tarr et al. 1997; Blanz
et al. 1999]. In [Tarr et al. 1997], the authors found that “visual recognition may be
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explained by a view-based theory in which viewpoint-specific representations encode
both quantitative and qualitative features”. In robotics, the Simultaneous Local-
ization And Mapping (SLAM) problem requires that the robot decides on its own
the necessary motions to construct the most accurate map possible. In [González-
Baños and Latombe 2002], an algorithm is proposed to guide the robot through a
series of good positions, where ‘good’ refers to the expected amount and quality of
the information that will be revealed at each new location.

The basic question underlying the viewpoint selection study and application is
“what is a ‘good’ scene viewpoint?” Obviously, this question does not have a sim-
ple answer. Depending on our objective, the best viewpoint can be, for instance,
the most representative one or the most unstable one, i.e., the one that maximally
changes when it is moved within its close neighborhood [Bordoloi and Shen 2005].
Palmer et al. [1981] and Blanz et al. [1999] have presented different experiments
demonstrating that observers prefer views (called canonical views) that avoid oc-
clusions and that are off-axis (such as a three-quarter viewpoint), salient (the most
significant characteristics of an object are visible), stable and with a large number
of visible surfaces.

Extending the work initiated in [Vázquez et al. 2001; Sbert et al. 2005], we
present here a unified and robust framework to deal with viewpoint selection and
mesh saliency. Given a set of viewpoints surrounding an object, we define an
information channel between the viewpoints and the polygons of the object. From
this channel, the viewpoint mutual information is used to obtain the best views of an
object, to calculate the stability of a viewpoint, and to guide the object exploration.
Then, we invert the channel and we compute both the information and the saliency
associated with each polygon. Finally, this polygonal saliency is used to calculate
how salient a viewpoint is and it is incorporated into viewpoint mutual information
to drive the viewpoint selection. Our framework is also applicable to any set of
viewpoints in a closed scene and, although only the geometric properties of an
object have been considered, other aspects such as lighting could be incorporated.

The main contributions of this paper can be summarized as follows. First, an
information channel between the set of viewpoints and the polygons of the object
is defined (Section 3). Second, a new viewpoint quality measure based on mutual
information is introduced (Section 3) and some of its fundamental properties are
used to deal with viewpoint similarity and stability (Section 4). Third, a new best
view selection algorithm, also used for viewpoint clustering and object exploration,
is presented (Section 5). Fourth, the information and the saliency associated with
each polygon are defined from the inverted viewpoint channel. From the polygonal
saliency, the viewpoint saliency is also computed (Section 6). Fifth, the viewpoint
quality measure is extended by incorporating the saliency as an importance factor
(Section 7).

2. BACKGROUND

In this section we review some basic concepts of information theory (see [Cover and
Thomas 1991]) and related work.
ACM Transactions on Applied Perception, Vol. V, No. N, Month 20YY.
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2.1 Information-Theoretic Concepts

Let X be a finite set, let X be a random variable taking values x in X with
distribution p(x) = Pr[X = x]. Likewise, let Y be a random variable taking values
y in Y. An information channel between two random variables (input X and output
Y ) is characterized by a probability transition matrix (composed of conditional
probabilities) which determines the output distribution given the input.

The Shannon entropy H(X) of a random variable X is defined by

H(X) = −
∑

x∈X
p(x) log p(x). (1)

It is also denoted by H(p) and measures the average uncertainty of a random vari-
able X. All logarithms are base 2 and entropy is expressed in bits. The convention
that 0 log 0 = 0 is used. The conditional entropy is defined by

H(Y |X) = −
∑

x∈X
p(x)

∑

y∈Y
p(y|x) log p(y|x), (2)

where p(y|x) = Pr[Y = y|X = x] is the conditional probability. The conditional
entropy H(Y |X) measures the average uncertainty associated with Y if we know
the outcome of X. In general, H(Y |X) 6= H(X|Y ), and H(X) ≥ H(X|Y ) ≥ 0.

The Mutual Information (MI) between X and Y is defined by

I(X,Y ) = H(X)−H(X|Y ) =
∑

x∈X
p(x)

∑

y∈Y
p(y|x) log

p(y|x)
p(y)

. (3)

It is a measure of the shared information between X and Y . It can be seen that
I(X, Y ) = I(Y,X) ≥ 0. A fundamental property of MI is given by the data pro-
cessing inequality which can be expressed in the following way: if X → Y → Z is a
Markov chain, i.e., p(x, y, z) = p(x)p(y|x)p(z|y), then

I(X, Y ) ≥ I(X, Z). (4)

This result demonstrates that no processing of Y , deterministic or random, can
increase the information that Y contains about X.

The relative entropy or Kullback-Leibler distance between two probability distri-
butions p = {p(x)} and q = {q(x)} defined over X is given by

KL(p|q) =
∑

x∈X
p(x) log

p(x)
q(x)

, (5)

where, from continuity, we use the convention that 0 log 0 = 0, p(x) log p(x)
0 = ∞ if

p(x) > 0, and 0 log 0
0 = 0. The relative entropy KL(p|q) is a divergence measure

between the true probability distribution p and the target probability distribution
q. It can be proved that KL(p|q) ≥ 0.

A convex function f on the interval [a, b] fulfils the Jensen inequality:∑n
i=1 λif(xi) − f (

∑n
i=1 λixi) ≥ 0 , where 0 ≤ λ ≤ 1,

∑n
i=1 λi = 1, and xi ∈

[a, b]. For a concave function, the inequality is reversed. If f is substituted by
the Shannon entropy, which is a concave function, we obtain the Jensen-Shannon

ACM Transactions on Applied Perception, Vol. V, No. N, Month 20YY.



4 · Miquel Feixas et al.

inequality [Burbea and Rao 1982]:

JS(π1, π2, . . . , πN ; p1, p2, . . . , pN ) ≡ H

(
N∑

i=1

πipi

)
−

N∑

i=1

πiH(pi) ≥ 0, (6)

where JS(π1, π2, . . . , πN ; p1, p2, . . . , pN ) is the Jensen-Shannon divergence of prob-
ability distributions p1, p2, . . . , pN with prior probabilities or weights π1, π2, . . . , πN ,
fulfilling

∑N
i=1 πi = 1. The JS-divergence measures how ‘far’ are the probabilities

pi from their likely joint source
∑N

i=1 πipi and equals zero if and only if all the pi are
equal. It is important to note that the JS-divergence is identical to I(X, Y ) when
πi = p(xi) and pi = p(Y |xi) for each xi ∈ X , where p(X) = {p(xi)} is the input
distribution, p(Y |xi) = {p(y1|xi), p(y2|xi), . . . , p(yM |xi)}, N = |X |, and M = |Y|
[Burbea and Rao 1982; Slonim and Tishby 2000].

2.2 Related Work

We review now some viewpoint quality measures for polygonal models. In [Ple-
menos and Benayada 1996], the quality of a viewpoint v of a scene is computed
using the Heuristic Measure (HM) given by

C(v) =

∑n
i=1d Pi(v)

Pi(v)+1e
n

+
∑n

i=1 Pi(v)
r

, (7)

where Pi(v) is the number of pixels corresponding to the polygon i in the image
obtained from the viewpoint v, r is the total number of pixels of the image (reso-
lution of the image), and n is the total number of polygons of the scene. In this
formula, dxe denotes the smallest integer, greater than or equal to x. The first
term in (7) gives the fraction of visible surfaces with respect to the total number of
surfaces, while the second term is the ratio between the projected area of the scene
(or object) and the screen area (thus, its value is 1 for a closed scene).

From (1), the Viewpoint Entropy (VE) [Vázquez et al. 2001] has been defined
from the relative area of the projected polygons over the sphere of directions cen-
tered at viewpoint v. Thus, the viewpoint entropy was defined by

Hv = −
Nf∑

i=0

ai

at
log

ai

at
, (8)

where Nf is the number of polygons of the scene, ai is the projected area of polygon
i over the sphere, a0 represents the projected area of background in open scenes,
and at =

∑Nf

i=0 ai is the total area of the sphere. The maximum entropy is ob-
tained when a certain viewpoint can see all the polygons with the same projected
area. The best viewpoint is defined as the one that has maximum entropy. In
molecular visualization, both maximum and minimum entropy views show relevant
characteristics of a molecule [Vázquez et al. 2006].

From (5), a new viewpoint quality measure, called Viewpoint Kullback-Leibler
distance (VKL) [Sbert et al. 2005], has been defined by

KLv =
Nf∑

i=1

ai

at
log

ai

at

Ai

AT

, (9)

ACM Transactions on Applied Perception, Vol. V, No. N, Month 20YY.
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where ai is the projected area of polygon i, at =
∑Nf

i=1 ai, Ai is the actual area
of polygon i and AT =

∑Nf

i=1 Ai is the total area of the scene or object. The
VKL measure is interpreted as the distance between the normalized distribution of
projected areas and the ‘ideal’ projection, given by the normalized distribution of
the actual areas. In this case, the background can not be taken into account. The
minimum value 0 is obtained when the normalized distribution of projected areas
is equal to the normalized distribution of actual areas. Thus, to select views of high
quality means to minimize KLv.

Apart from the previous references on viewpoint quality measures, Polonsky et al.
[2005] describe a number of different ways to measure the goodness of a view of
an object. After analyzing different view descriptors, they conclude that no single
descriptor does a perfect job and possibly a combination of them would amplify the
advantage that each one has. Given a sphere of viewpoints, Yamauchi et al. [2006]
compute the similarity between each two disjoint views using Zernike moments
analysis and obtain a similarity weighted spherical graph. A view is considered
to be stable if all edges incident on its viewpoint in the spherical graph have high
similarity weights. Andújar et al. [2004] and Sokolov et al. [2006] present two dif-
ferent exploration algorithms guided by viewpoint entropy and the total curvature
of a visible surface, respectively. In the volume rendering field, Bordoloi and Shen
[2005] and Takahashi et al. [2005] use an extended version of viewpoint entropy
and Viola et al. [2006] introduce the viewpoint mutual information. Castelló et al.
[2007] use viewpoint entropy as a perceptual measure for mesh simplification.

Based on the investigation on canonical views, Gooch et al. [2001] present a new
method for constructing images, where the viewpoint is chosen to be off-axis, and
Lu et al. [2006] obtain the viewing direction from the combination of factors such
as saliency, occlusion, stability and familiarity. Lee et al. [2005] have introduced
the saliency as a measure for regional importance for graphics meshes and Kim
and Varshney [2006] presented a visual-saliency-based operator to enhance selected
regions of a volume. Gal and Cohen-Or [2006] introduced a method for partial
matching of surfaces by using the abstraction of salient geometric features and a
method to construct them.

3. VIEWPOINT CHANNEL

In this section, we introduce an information channel between a set of viewpoints
and the set of polygons of an object to deal with viewpoint selection. Then we
define the viewpoint mutual information to select the most representative views of
an object. At the end of this section we compare the behavior of that measure with
the ones reviewed in Section 2.

3.1 Viewpoint Mutual Information

Our viewpoint selection framework is constructed from an information channel
V → O between the random variables V (input) and O (output), which repre-
sent, respectively, a set of viewpoints and the set of polygons of an object (see
Figure 1(a)). This channel, which we call viewpoint channel, is defined by a con-
ditional probability matrix obtained from the projected areas of polygons at each
viewpoint. Viewpoints will be indexed by v and polygons by o. Throughout this

ACM Transactions on Applied Perception, Vol. V, No. N, Month 20YY.



6 · Miquel Feixas et al.

(a) Viewpoint sphere. (b) Probability distributions of channel V → O.

Fig. 1. Viewpoint information channel.

paper, the capital letters V and O as arguments of p() will be used to denote prob-
ability distributions. For instance, while p(v) will denote the probability of a single
viewpoint v, p(V ) will represent the input distribution of the set of viewpoints.

The viewpoint channel can be interpreted as an observation channel where the
conditional probabilities represent the probability of seeing a determined polygon
from a given viewpoint (see Figure 1(b)). The three basic elements of this channel
are:

—Conditional probability matrix p(O|V ), where each element p(o|v) = ao

at
is defined

by the normalized projected area of polygon o over the sphere of directions cen-
tered at viewpoint v (ao is the projected area of polygon o and at is the total area
of the sphere of directions). Conditional probabilities fulfil

∑
o∈O p(o|v) = 1. In

our approach, the background is not taken into account but it could be considered
as another polygon.

—Input distribution p(V ), which represents the probability of selecting each view-
point. In our experiments, p(V ) will be obtained from the normalization of the
projected area of the object at each viewpoint. This can be interpreted as the
probability that a random ray originated at v hits (or sees) the object. This
assignation is consistent with the objective of selecting the viewpoints which see
more projected area. Let us remember that this is a characteristic of a canonical
view (see Section 1). The input distribution can also be interpreted as the im-
portance assigned to each viewpoint v. For instance, the input distribution could
be defined by p(v) = 1

Nv
, where Nv is the number of viewpoints and, in this case,

the same importance would be assigned to each viewpoint.

—Output distribution p(O), given by

p(o) =
∑

v∈V
p(v)p(o|v), (10)

which represents the average projected area of polygon o, i.e., the probability of
polygon o to be hit (or seen) by a random ray cast from the viewpoint sphere.

From the previous definitions, the conditional entropy (2) is given by the average
ACM Transactions on Applied Perception, Vol. V, No. N, Month 20YY.
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of all viewpoint entropies:

H(O|V ) = −
∑

v∈V
p(v)

∑

o∈O
p(o|v) log p(o|v) =

∑

v∈V
p(v)H(O|v), (11)

where H(O|v) = −∑
o∈O p(o|v) log p(o|v) is the viewpoint entropy Hv (8) and mea-

sures the degree of uniformity of the projected area distribution at viewpoint v.
Let us observe that Hv has been now rewritten in a different form. Both entropies
H(O|v) and H(O|V ) tend to infinity when polygons are infinitely refined. This
makes these measures very sensitive to the discretisation of the object and, in gen-
eral, not appropriate to evaluate the quality of a viewpoint.

We now devote our attention to the mutual information (3) between V and O,
that expresses the degree of dependence or correlation between the set of viewpoints
and the object. From (3), mutual information is given by

I(V,O) =
∑

v∈V
p(v)

∑

o∈O
p(o|v) log

p(o|v)
p(o)

=
∑

v∈V
p(v)I(v, O), (12)

where we define

I(v, O) =
∑

o∈O
p(o|v) log

p(o|v)
p(o)

(13)

as the Viewpoint Mutual Information (VMI), which gives us the degree of depen-
dence between the viewpoint v and the set of polygons, and it is interpreted as a
measure of the quality of viewpoint v. Consequently, mutual information I(V, O)
gives us the average quality of the set of viewpoints. Quality is considered here
equivalent to representativeness.

In our framework, the best viewpoint is defined as the one that has minimum
VMI. High values of the measure mean a high dependence between viewpoint v and
the object, indicating a highly coupled view (for instance, between the viewpoint
and a small number of polygons with low average visibility). On the other hand,
the lowest values correspond to the most representative or relevant views, showing
the maximum possible number of polygons in a balanced way.

3.2 Discussion

It is important to observe that I(v, O) = KL(p(O|v)|p(O)), where p(O|v) is the con-
ditional probability distribution between v and the object and p(O) is the marginal
probability distribution of O, which in our case corresponds to the distribution of
the average of projected areas. It is worth observing that p(O) plays the role of the
target distribution in the KL distance and also the role of the optimal distribution
since our objective is that p(O|v) becomes similar to p(O) to obtain the best views.
On the other hand, this role agrees with intuition since p(O) is the average visibility
of polygon o over all viewpoints, i.e., the mixed distribution of all views, and we
can think of p(O) as representing, with a single distribution, the knowledge about
the scene. Note the difference between VMI (13) and VKL (9), due to the fact that
in the last case the distance is taken with respect to the actual areas.

In [Viola et al. 2006], it has been shown that the main advantage of VMI over
VE is its robustness to deal with any type of discretisation or resolution of the
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volumetric dataset. The same advantage can be observed for polygonal data. Thus,
while a highly refined mesh will attract the attention of VE, VMI will be almost
insensitive to changes in the mesh resolution. This behavior of both measures with
respect to the discretisation can be deduced from the mathematical analysis of
VE and VMI. For instance, let us assume that a regular polygon o of the object is
subdivided into two equal parts o1 and o2 such that p(o1|v) = p(o2|v), p(o1) = p(o2),
p(o|v) = p(o1|v) + p(o2|v) and p(o) = p(o1) + p(o2). Assuming that only the term
referred to polygon o can change in the formulas of VE (8) and VMI (13), we
analyze their variation after the subdivision of o. The variation of VE is given by

δH(O|v) = −p(o1|v) log p(o1|v)− p(o2|v) log p(o2|v)− (−p(o|v) log p(o|v)) = p(o|v).

Therefore, VE increases with a value p(o|v) after the subdivision. On the other
hand, the variation of VMI is given by

δI(v,O) = p(o1|v) log
p(o1|v)
p(o1)

+ p(o2|v) log
p(o2|v)
p(o2)

− p(o|v) log
p(o|v)
p(o)

= 0. (14)

Thus, VMI remains invariant to the proposed subdivision. In general, if we com-
pare both measures for finer and finer discretisations, VMI will converge to an
upper bound and VE will increase to infinite [Feixas 2002]. Note that HM is also
highly dependent on the discretisation, since the first term in (7) is given by the
quotient between the number of visible polygons and the total number of poly-
gons. The behavior of all these measures with respect to the discretisation will be
experimentally shown in the next section.

3.3 Results

In this section, the behavior of VMI (13) is compared with the one of HM (7),
VE (8), and VKL (9). To compute these viewpoint quality measures, we need a
preprocess step to estimate the projected area of the visible polygons of the object at
each viewpoint. Before projection, a different color is assigned to each polygon. The
number of pixels with a given color divided by the total number of pixels projected
by the object gives us the relative area of the polygon represented by this color
(conditional probability p(o|v)). In this paper, all measures have been computed
without taking into account the background and using a projection resolution of
640× 480.

In our experiments, all the objects are centered in a sphere of 642 viewpoints built
from the recursive discretisation of an icosahedron and the camera is looking at the
center of this sphere. Our framework could be extended to any other placement of
viewpoints but the choice of a sphere of viewpoints permits us to analyze an object
in an isotropic manner. Note that all the measures analyzed here are sensitive to
the relative size of the viewpoint sphere with respect to the object. In this paper,
the viewpoint sphere is built in the following way: first, the smallest bounding
sphere of the model is obtained and, then, the viewpoint sphere adopts the same
center as the bounding sphere and a radius three times the radius of the bounding
sphere.

In Table I we show the number of polygons of the models used in this section
and the cost of the preprocess step, i.e., the cost of computing the probability
distributions p(V ), p(O|V ) and p(O). Even though a large number of viewpoints
ACM Transactions on Applied Perception, Vol. V, No. N, Month 20YY.
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Fig. 2. The figure shows the interface of our viewpoint software.

Cow Coffee cup Ship Lady of Elche

Number of triangles 9593 43935 47365 51978

Computational cost 41 sec 81 sec 62 sec 80 sec

Table I. Number of triangles of the models used and computational cost of the preprocess step for
each model.

(a) (b) (c)

Fig. 3. Cow, ship and lady of Elche wireframe models.

have been used, an acceptable quality could be achieved with less viewpoints and the
consequent reduction of timings. To show the behavior of the measures, the sphere
of viewpoints is represented by a color map, where red and blue colors correspond
respectively to the best and worst views. Note that a good viewpoint corresponds
to a high value for both HM (7) and VE (8), and to a low value for both VKL
(9) and VMI (13). Figure 2 shows the interface of our viewpoint software created
using the 3D-rendering engine Ogre3D (http://www.ogre3d.org). Our tests were
run on a 3GHz machine with 2 GB RAM and an Nvidia GeForce 8800 GTX with
768 MB.

To evaluate the performance of the four viewpoint quality measures presented,
five models have been used: a cow (Figure 3(a)), two coffee-cup-and-dish with two
different discretisations of the dish (Figures 5(i.a) and 5(ii.a)), a ship (Figure 3(b)),
and the lady of Elche (Figure 3(c)). Figure 4 has been organized as follows. Rows
(i), (ii) and (iii) show, respectively, the behavior of HM, VE and VMI measures.
Columns (a) and (b) show, respectively, the best and worst views, and columns (c)
and (d) show two different projections of the viewpoint spheres. Figure 4 illustrates
how VMI selects better views than both HM and VE. Observe how VE chooses
to see the most highly discretised parts of the cow. The same occurs with HM,

ACM Transactions on Applied Perception, Vol. V, No. N, Month 20YY.
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(i.a) (i.b) (i.c) (i.d)

(ii.a) (ii.b) (ii.c) (ii.d)

(iii.a) (iii.b) (iii.c) (iii.d)

Fig. 4. (a) The most representative and (b) the most restricted views, and (c-d) the viewpoint
spheres obtained respectively from the (i) HM, (ii) VE and (iii) VMI measures. Red colors on the
sphere represent the highest quality views and blue colors represent the lowest quality views.

although this one also searches for a view with higher projected area. While the
worst views for the HM and VE measures correspond to the ones that see the less
discretised parts, in the VMI case a true restricted view is obtained.

Figure 5 shows the behavior of the HM, VE and VMI measures when the dis-
cretisation of the object varies outstandingly. Rows (i) and (ii) show the viewpoint
spheres computed respectively for the coffee-cup-and-dish model of Figure 5(i.a)
and for the same model with a more refined dish (Figure 5(ii.a)). We can clearly
observe how the spheres obtained from HM and VE change according to the dis-
cretisation variation, whereas VMI spheres are almost insensitive to this variation.

The different behavior between VKL and VMI is shown in Figure 6. Remember
that the main difference between VMI and VKL is that while the former computes
the distance between the projected areas of the polygons and the average area seen
by the set of viewpoints, the later calculates the distance with respect to the actual
areas of polygons. Due to this fact, the reliability of VKL is outstandingly affected
by the existence of many non visible or poorly visible polygons, as in the case of
the ship and lady of Elche models.

4. VIEWPOINT SIMILARITY AND STABILITY

As we have mentioned in Section 1, a basic property of a canonical view is its
stability [Blanz et al. 1999]. That is, observers prefer a view which minimally
changes when it is moved within its nearest neighborhood. In this section, viewpoint
stability is defined from the notion of dissimilarity between two viewpoints, which is
ACM Transactions on Applied Perception, Vol. V, No. N, Month 20YY.
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(i.a) (i.b) (i.c) (i.d)

(ii.a) (ii.b) (ii.c) (ii.d)

Fig. 5. Column (a) shows the models used to compute the viewpoint spheres, where the dish in
(ii.a) is more refined than the one in (i.a). The viewpoint spheres are obtained respectively from
the (b) HM, (c) VE and (d) VMI measures.

(i.a) (i.b) (i.c) (i.d)

(ii.a) (ii.b) (ii.c) (ii.d)

Fig. 6. Viewpoint spheres obtained respectively from the (i) VKL and (ii) VMI measures.

given by the Jensen-Shannon divergence between their respective distributions. The
use of Jensen-Shannon as a measure of view similarity has been previously proposed
by Bordoloi and Shen [2005] in the volume rendering field. In our approach, this
measure appears naturally from the variation of mutual information.

If we apply the data processing inequality (4) to the channel V → O, we
find that any clustering over V or O, respectively denoted by V̂ and Ô, will re-
duce I(V, O). Therefore, if neighbor viewpoints (or polygons) are clustered, then
I(V̂ , O) ≤ I(V,O) (or I(V, Ô) ≤ I(V,O)). The result of clustering (or merging)
two viewpoints vi and vj is defined as a ‘virtual’ viewpoint v̂ ≡ vi ⊕ vj such that

p(v̂) = p(vi ⊕ vj) = p(vi) + p(vj) (15)

and

p(o|v̂) = p(o|vi ⊕ vj) =
p(vi)p(o|vi) + p(vj)p(o|vj)

p(v̂)
. (16)

ACM Transactions on Applied Perception, Vol. V, No. N, Month 20YY.
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The reduction of MI when two viewpoints vi and vj are merged is given by

δI = I(V,O)− I(V̂ , O)
= (p(vi)I(vi, O) + p(vj)I(vj , O))− p(v̂)I(v̂, O)

= p(v̂)
(

p(vi)
p(v̂)

I(vi, O) +
p(vj)
p(v̂)

I(vj , O)− I(v̂, O)
)

= p(v̂)D(vi, vj), (17)

where we define

D(vi, vj) =
p(vi)
p(v̂)

I(vi, O) +
p(vj)
p(v̂)

I(vj , O)− I(v̂, O) (18)

as the viewpoint dissimilarity between vi and vj . That is, the loss of information
when two viewpoints are merged is interpreted from the dissimilarity between them.
It can be seen that the dissimilarity will be null when the two viewpoints capture
the same distribution of projected areas: if p(O|vi) = p(O|vj), then δI = 0.

From the definition of the Jensen-Shannon divergence, it can be shown that the
viewpoint dissimilarity can also be written as

D(vi, vj) = JS

(
p(vi)
p(v̂)

,
p(vj)
p(v̂)

; p(O|vi), p(O|vj)
)

, (19)

where the second term is the Jensen-Shannon divergence (6) between the distri-
butions p(O|vi) and p(O|vj) captured by vi and vj with weights p(vi)

p(v̂)
and p(vj)

p(v̂)
,

respectively (see [Slonim and Tishby 1999]) . If two views are very similar, i.e., the
JS-divergence between them is small, the channel could be simplified by substitut-
ing these two viewpoints by their merging, without a significant loss of information.

Two interesting properties follow:

—It can be seen that the clustering V̂ of all viewpoints would give δI = I(V, O)
and, thus, I(V̂ , O) = 0.

—H(O) = H(O|V ) + I(V, O) = H(O|V̂ ) + I(V̂ , O), where H(O) is the entropy of
p(O). Note that if two viewpoints are clustered the decrease of I(V, O) is equal
to the increase of H(O|V ) since H(O) remains constant (the discretisation of the
object has not been changed).

View unstability was defined by Bordoloi and Shen [2005] as the maximum change
in view that occur when the camera position is shifted within a small neighborhood.
Thus, a small change corresponds to a stable viewpoint and a large change to
an unstable one. We now define the unstability of a viewpoint v as the average
variation of dissimilarity between v and its neighbor viewpoints. That is, vi is a
stable viewpoint if p(O|vi) is close to the probability distributions p(O|vj) of its
neighbors, where vj stands for a neighbor of vi. Thus, the viewpoint unstability of
vi is defined by

U(vi) =
1

Nn

Nn∑

j=1

D(vi, vj), (20)

where vj is a neighbor of vi and Nn is the number of neighbors of vi.
ACM Transactions on Applied Perception, Vol. V, No. N, Month 20YY.
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(i.a) (i.b) (i.c) (i.d)

(ii.a) (ii.b) (ii.c) (ii.d)

(iii.a) (iii.b) (iii.c) (iii.d)

Fig. 7. The (a) most stable and (b) most unstable viewpoints, and (c-d) the unstability spheres
obtained for the (i) coffee-cup-and-dish, (ii) cow and (iii) lady of Elche models. Red colors on the
sphere represent high unstability values, blue colors represent low unstability values.

Figure 7 shows the behavior of the viewpoint unstability measure for the coffee-
cup-and-dish, cow and lady of Elche models. Observe how the results obtained
agree with intuition.

5. BEST VIEW SELECTION AND OBJECT EXPLORATION

In order to understand or model an object, we are interested in selecting a set of
representative views which provides a complete representation of the object. In
this section, new algorithms based on the concepts introduced in Sections 3 and
4 are applied to both the selection of the N best representative views and object
exploration.

5.1 Selection of N Best Views

With the goal of obtaining the best representation of the object using the minimum
number of views, a new viewpoint selection algorithm based on VMI is presented. If
we look for a good set of views within the set of viewpoints, we will obtain the most
representative set by selecting the views such that their mixing (merging) minimizes
the distance to the target distribution p(O). We consider that this mixing provide
us with a balanced view of the object.

Thus, our selection algorithm should select the N viewpoints so that their merg-
ing v̂ minimizes the viewpoint mutual information I(v̂, O). Due to the fact that
this optimization algorithm is NP-complete, we adopt a greedy strategy by selecting
successive viewpoints that minimize I(v̂, O). That is, at each merging step we aim
to maximize the JS-divergence between the set of previously merged viewpoints

ACM Transactions on Applied Perception, Vol. V, No. N, Month 20YY.
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Coffee cup Armadillo Lady of Elche

Best view I(v̂, O) Ratio I(v̂, O) Ratio I(v̂, O) Ratio
a 1.471 0.730 1.791 0.850 1.355 0.703
b 0.692 0.343 0.837 0.397 0.644 0.334
c 0.346 0.172 0.616 0.292 0.458 0.237
d 0.262 0.130 0.416 0.197 0.275 0.143
e 0.207 0.103 0.310 0.147 0.219 0.113
f 0.190 0.095 0.238 0.113 0.153 0.079

Cost 36 sec 77 sec 38 sec

Table II. For the coffee cup, armadillo, and lady of Elche models, we show the I(v̂, O) values from
the merging of the six best selected viewpoints (see Figure 8), the corresponding VMI-ratio, and
the computation cost of selecting the six best views.

and the new viewpoint to be selected. This algorithm permits us to find in an
automated and efficient way the minimal set of views which represent the object or
scene.

The algorithm proceeds as follows. First, we select the best viewpoint v1 with
distribution p(O|v1) corresponding to the minimum I(v,O). Next, we select v2

such that the mixed distribution p(v1)

p(v̂)
p(O|v1) + p(v2)

p(v̂)
p(O|v2) will minimize I(v̂, O),

where v̂ represents the clustering of v1 and v2 and p(v̂) = p(v1) + p(v2). At each
step, a new mixed distribution p(v1)

p(v̂)
p(O|v1) + p(v2)

p(v̂)
p(O|v2) + . . . + p(vn)

p(v̂)
p(O|vn),

where p(v̂) = p(v1) + p(v2) + . . . + p(vn), is produced until the VMI-ratio given by
I(v̂,O)
I(V,O) is lower than a given threshold or a fixed number of views is achieved. This
ratio can be interpreted as a measure of the goodness or representativeness of the
selected viewpoints.

Figure 8 show the six best views obtained with our VMI-based selection algorithm
for three different models. In Table II, for each new viewpoint selected we show the
VMI of the clustering of selected viewpoints (I(v̂, O)) and the corresponding VMI-
ratio. For instance, to achieve a degree of representativeness given by a VMI-ratio
lower than 0.15, four views are needed for the coffee-cup-and-dish and lady of Elche
models, and five for the armadillo model. Table II also shows the computation
cost of selecting the six best views. The behavior of our algorithm is also analyzed
in Figure 9, where we observe how the I(v̂, O) values obtained from the successive
mixed distributions converge asymptotically to zero. It is important to note that
the best views for the selected models (Figure 8(a)) are not the ones our intuition
would expect as more representative. This is due to the fact that, from a purely
geometric approach, the best views of Figure 8 correspond to the viewpoints that
their projected area distribution is more similar (in the Kullback-Leibler sense) to
the average projected area distribution (target distribution). This problem will be
tackled in the next sections, introducing perceptual criteria to select the best views.

From the N best representative viewpoints, a simple greedy clustering algorithm
is proposed in order to partition the sphere of viewpoints. The two main steps of
this algorithm are the following. First, we select the N best viewpoints from a
given VMI-ratio. These viewpoints will play the role of centroids in our algorithm.
Second, each viewpoint is assigned or clustered with the ’nearest’ centroid, where
ACM Transactions on Applied Perception, Vol. V, No. N, Month 20YY.
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(i)

(ii)

(iii)

Fig. 8. From (a) to (f), the six most representative views selected by the VMI-based algorithm
for the (i) coffee-cup-and-dish, (ii) armadillo, and (iii) lady of Elche models.

Fig. 9. For the models used in Figure 8, I(v̂, O) values (vertical axis) are shown from the successive
mixed distributions corresponding to the viewpoints (horizontal axis) obtained by our selection
algorithm.

ACM Transactions on Applied Perception, Vol. V, No. N, Month 20YY.



16 · Miquel Feixas et al.

(a) (b) (c) (d)

Fig. 10. Viewpoint clustering spheres with six clusters for the (a) coffee-cup-and-dish, (b) cow,
(c) ship and (d) lady of Elche models.

the distance is given by the Jensen-Shannon divergence between two viewpoints.
Finally, the set of viewpoints will be grouped around the N best viewpoints. In
Figure 10, the behavior of this clustering algorithm is shown for the (a) coffee cup,
(b) cow, (c) ship and (d) lady of Elche models.

5.2 Object Exploration

In this section, two greedy algorithms are presented to explore the object. In
both cases, the best viewpoint (minimum VMI) is the starting point of the ob-
ject exploration. In the first algorithm (guided tour), the path visits a set of
N preselected best views which ensure a good exploration of the object. In the
second algorithm (exploratory tour), the successive viewpoints are selected us-
ing the maximum novelty criterion with respect to the parts seen of the object.
In http://www.gametools.org/viewpoint/index.html, several videos show the
performance of these methods.

Guided tour. First, we obtain the list of the N best viewpoints. Then, the
algorithm starts at the best viewpoint and visits all the other best viewpoints as
follows. From the best viewpoint, we find the nearest (minimum JS-divergence)
best viewpoint in the list. This is now the target viewpoint. Thus, from the
best viewpoint, successive neighbor viewpoints will be selected so that, without
any viewpoint repetition, their distance to the target viewpoint is minimum. The
distance between two viewpoints is always calculated from the JS-divergence. When
the first target viewpoint is achieved, we select a new target one among the rest
of best viewpoints in the list. Then we proceed in the same way until the last
best view is reached or the cycle is completed arriving at the initial best viewpoint.
Our algorithm, being a greedy one, is fast but it can cause a small detour over
the minimum path. Figure 11(i) shows the exploration of the coffee-cup-and-dish
and the lady of Elche models from the six best views obtained in each case (the
blue, green and red light points correspond to the starting, intermediate and ending
viewpoints, respectively). Two different projections of the sphere are shown to see
the path better.
ACM Transactions on Applied Perception, Vol. V, No. N, Month 20YY.
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(i.a) (i.b) (i.c) (i.d)

(ii.a) (ii.b) (ii.c) (ii.d)

Fig. 11. (i) Guided and (ii) exploratory tours around the coffee-cup-and-dish and lady of Elche
models, respectively.

Exploratory tour. From [Itti and Baldi 2006], we know that maximum novelty
or surprise attracts the attention of an observer. Following this principle, the
algorithm selects the best viewpoint and then successively visits the (non-visited)
neighbor viewpoints that minimize the I(v̂, O) of all visited viewpoints. This means
that at each step we select the viewpoint that maximizes its JS-divergence with
respect to all visited viewpoints and, consequently, the most dissimilar (surprising)
viewpoint is selected. This procedure stops if the VMI-ratio is lower than a given
threshold. Figure 11(ii) shows the result of the exploration of the coffee-cup-and-
dish and the lady of Elche models.

6. VIEW-BASED POLYGONAL INFORMATION AND SALIENCY

As we have seen in Section 3, the information associated with each viewpoint has
been obtained from the definition of the channel between the sphere of viewpoints
and the polygons of the object. Now, the information associated with a polygon
will be defined as the contribution of this polygon to the MI of that channel. To
illustrate this new approach, the inverted channel O → V is considered, so that O
is the input and V the output.

6.1 View-based Polygonal Information

From the Bayes theorem p(v, o) = p(v)p(o|v) = p(o)p(v|o), the mutual informa-
tion (12) can be rewritten as

I(O, V ) =
∑

o∈O
p(o)

∑

v∈V
p(v|o) log

p(v|o)
p(v)

=
∑

o∈O
p(o)I(o, V ), (21)

where we define

I(o, V ) =
∑

v∈V
p(v|o) log

p(v|o)
p(v)

(22)
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(a) (b) (c) (d)

Fig. 12. View-based polygonal information for the (a) coffee-cup-and-dish, (b) mini, (c) Hebe and
(d) lady of Elche models.

Fig. 13. The figure shows the application of polygonal information as ambient occlusion.

as the Polygonal Mutual Information (PMI), which represents the degree of corre-
lation between the polygon o and the set of viewpoints, and can be interpreted as
the information associated with polygon o. Analogous to VMI, low values of PMI
correspond to polygons that ‘see’ the maximum number of viewpoints in a balanced
way, i.e., p(V |o) is close to p(V ). The opposite happens for high values. Let us
remind that MI is invariant to the inversion of the channel since I(V,O) = I(O, V ).
As the discrete mutual information converges to the upper bound represented by
the continuous mutual information for a finer and finer discretisation (see [Feixas
2002]), the average of PMI values will converge towards the corresponding limit-
ing value. This makes PMI very robust against discretisation. Note that if the
model changes with each discretisation level the upper bound property will not be
guaranteed.

In Figure 12, we show the information maps of (i) the coffee-cup-and-dish, (ii)
mini, (iii) Hebe and (iv) lady of Elche models. To obtain these images, the PMI
has been normalized between 0 and 1 and subtracted from 1. Thus, low values of
PMI, corresponding to non-occluded or visible (from many viewpoints) polygons,
are represented by values near 1 in the grey-map, while high values of PMI, corre-
sponding to occluded polygons, are represented by values near 0 in the grey-map.
In Figure 12 we show the polygonal information values computed from the center
of each polygon, while in Figure 13 these values have been linearly interpolated at
the vertexes of the polygons. Observe that these maps look as an ambient occlusion
ACM Transactions on Applied Perception, Vol. V, No. N, Month 20YY.
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or obscurance map (see [Landis 2002; Christensen ; Zhukov et al. 1998; Iones et al.
2003]). In Figure 13 we show one example of the use of polygonal information as
ambient occlusion, where this is added to a textured model.

6.2 View-based Mesh Saliency

Itti et al. [1998] maintain that visual attention is saliency-dependent and use a
saliency map to represent the conspicuity or saliency at every location in the visual
field by a scalar quantity and to guide the selection of attended locations. In [Lee
et al. 2005], mesh saliency is captured from surface curvatures and is considered as
a perception-inspired measure of regional importance and has been used in graphics
applications such as mesh simplification and viewpoint selection. We now propose
a new definition of mesh saliency based on PMI.

Analogous to the view unstability (Section 4), defined from the dissimilarity be-
tween two views, we now define the view-based mesh saliency from the dissimilarity
between two polygons, which is given by the variation of mutual information when
two polygons are clustered. In this approach, mesh saliency is formulated in terms
of how the polygons ‘see’ the set of viewpoints. Thus, following the same scheme de-
veloped in Section 4, the saliency of a polygon is defined as the average dissimilarity
between this polygon and its neighbors.

Similarly to (17), the reduction of MI when two polygons oi and oj are clustered
is given by

δI = I(O, V )− I(Ô, V )
= (p(oi)I(oi, V ) + p(oj)I(oj , V ))− p(ô)I(ô, V )

= p(ô)
(

p(oi)
p(ô)

I(oi, V ) +
p(oj)
p(ô)

I(oj , V )− I(ô, V )
)

= p(ô)D(oi, oj), (23)

where ô = oi⊕oj is the result of clustering oi and oj and the polygonal dissimilarity
between oi and oj is defined by

D(oi, oj) =
p(oi)
p(ô)

I(oi, V ) +
p(oj)
p(ô)

I(oj , V )− I(ô, V ). (24)

This dissimilarity measure can also be written as

D(oi, oj) = JS

(
p(oi)
p(ô)

,
p(oj)
p(ô)

; p(V |oi), p(V |oj)
)

, (25)

where the second term is the Jensen-Shannon divergence (6) between p(V |oi) and
p(V |oj) with weights p(oi)

p(ô)
and p(oj)

p(ô)
, respectively. Hence, two polygons are ‘similar’

when the JS-divergence between them is small.
Some interesting properties follow:

—If two polygons are very ‘similar’, their clustering involves a small loss of mutual
information. If p(V |oi) = p(V |oj), then δI = 0.

—It can be easily seen that the clustering Ô of all polygons would give δI = I(V, O)
and, thus, I(Ô, V ) = 0.
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(a) (b) (c) (d)

Fig. 14. Mesh saliency for the (a) coffee-cup-and-dish, (b) armadillo, (c) Hebe, and (d) lady of
Elche models.

—H(V ) = H(V |O) + I(O, V ) = H(V |Ô) + I(Ô, V ), where H(V ) is the entropy of
p(V ). That is, if two polygons are clustered the reduction of I(O, V ) is equal to
the increase of H(V |O) since H(V ) remains constant (the input distribution of
V is not changed).

Similarly to the unstability of a viewpoint (20), the polygonal saliency of oi is
defined by

S(oi) =
1

No

No∑

j=1

D(oi, oj) ≥ 0, (26)

where oj is a neighbor polygon of oi and No is the number of neighbor polygons
of oi. Thus, a polygon o will be salient if the average of JS-divergences between o
and its neighbors is high. On the other hand, a polygon at the center of a smooth
region will have probably low saliency since the polygons of this region will present
small visibility differences with respect to the set of viewpoints. Figure 14 shows
the behavior of our saliency measure. The most salient parts are represented in red
and the least salient ones in blue. For instance, the handle of the coffee cup and
the nose, mouth and eyes of the other models are the most salient surfaces.

While the average of PMI values converges to a theoretical upper bound for a
finer and finer discretisation, polygonal saliency will decrease. This makes saliency
dependent on the discretisation. In Figure 15 we illustrate how the polygonal
saliency depends on the mesh discretisation level. For comparison purposes, the
saliency maps of the armadillo have been represented using the same color range
and a projection resolution of 1280 × 960. The armadillo model has been sim-
plified using the QSlim simplification software (http://graphics.cs.uiuc.edu/
~garland/software/qslim.html).

Similarly to [Lee et al. 2005], where mesh saliency was used to select the best
views, we propose a method to calculate the saliency of a viewpoint. Up to now we
have calculated the saliency of a polygon, however we can convey this information to
the sphere of viewpoints, using the conditional probabilities of the inverse channel.
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(a) (b) (c)

Fig. 15. Mesh saliency maps for different resolutions of the armadillo: (a) 7500, (b) 15000 and (c)
60000 triangles.

(i.a) (i.b) (i.c) (i.d)

(ii.a) (ii.b) (ii.c) (ii.d)

(iii.a) (iii.b) (iii.c) (iii.d)

Fig. 16. The (a) most salient and (b) least salient views, and (c-d) saliency spheres obtained for
the (i) coffee-cup-and-dish, (ii) Hebe and (iii) lady of Elche models. Red colors on the sphere
represent high saliency values, blue colors represent low saliency values.

Hence, the viewpoint saliency is defined by

S(v) =
∑

o∈O
S(o)p(v|o). (27)

Figure 16 shows the viewpoint saliency for the coffee-cup-and-dish, armadillo and
lady of Elche models. Columns (a) and (b) illustrate the most salient view and the
least one, respectively. Columns (c) and (d) show two different projections of the
corresponding saliency spheres. Observe how the most salient views show us the
most salient parts of each object.
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(i.a) (i.b) (i.c)

(ii.a) (ii.b) (ii.c)

Fig. 17. (i) VMI and (ii) saliency-based EVMI spheres for the (a) coffee-cup-and-dish, (b) ar-
madillo and (c) lady of Elche models.

7. IMPORTANCE-DRIVEN VIEWPOINT SELECTION

As we have mentioned in Section 1, it is desirable that a canonical view of an object
shows its most salient parts and also the largest number of visible surfaces [Palmer
et al. 1981; Blanz et al. 1999]. However, the viewpoint quality measure VMI only
takes into account the geometric relation between the object and the set of view-
points. Therefore, we can not expect that in general the best VMI-based views
fulfill the desired properties for a canonical view. This fact motivates us to investi-
gate how perceptual criteria such as saliency can be introduced into our viewpoint
selection quality measure in order to improve the automatic selection of good views.

In the previous section we have presented a method to compute how salient is a
viewpoint, but we aim now to incorporate the polygonal saliency to the viewpoint
mutual information in order to take into account different factors concerning, re-
spectively, the amount of projected area, the geometric representativeness and the
saliency of a polygon. First, we demonstrate how the importance can be introduced
into the object space by modifying directly the target distribution p(O). Second,
we show the results obtained by the use of the polygonal saliency as an importance
factor in the viewpoint mutual information measure.

Due to the fact that VMI represents the distance between the projected visibil-
ity distribution p(O|v) at viewpoint v and the target distribution p(O), VMI can
be extended by weighting the target distribution with an importance factor. Thus,
adding importance to our scheme means simply weighting the original target distri-
bution by an importance factor in order to obtain the new target distribution. The
optimal viewpoint would be the one viewing every polygon proportional to its av-
erage projected area multiplied by its importance. Hence, the Extended Viewpoint
ACM Transactions on Applied Perception, Vol. V, No. N, Month 20YY.
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(i)

(ii)

(iii)

Fig. 18. The six most representative views for the (i) coffee-cup-and-dish, (ii) armadillo and (iii)
lady of Elche models using the saliency-based EVMI measure.

Mutual Information (EVMI) is given by

I ′(v, O) =
∑

o∈O
p(o|v) log

p(o|v)
p′(o)

, (28)

where

p′(o) =
p(o)i(o)∑

o∈O p(o)i(o)
(29)

and i(o) is the importance of polygon o. In the experiments of this section, i(o)
has been substituted by the polygonal saliency S(o). We follow the convention
that if S(o) = 0 then polygon o is not taken into account. Other features, such
as illumination, could be introduced as importance factors in the EVMI. In [Viola
et al. 2006], the object importance has been used to calculate the best views for a
volumetric dataset.

The effects of incorporating saliency in our viewpoint selection framework are
depicted in Figures 17 and 18, which show for the coffee-cup-and-dish, armadillo
and lady of Elche models the saliency-based EVMI spheres and the six most repre-
sentative views, obtained with the best view selection algorithm (Section 5.1) using
saliency-based EVMI. The saliency-based EVMI spheres of Figure 17(ii) show the
perceptual improvement obtained with respect to the corresponding VMI spheres
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(Figure 17(i)). For instance, whereas the VMI-based best view of the coffee-cup-
and-dish shows the bottom of the dish (Figure 8(i.a)), the best view based on EVMI
shows a lateral view of the coffee-cup-and-dish (Figure 18(i.a)) which is perceptu-
ally much better than the one of Figure 8(i.a). Similarly, the same conclusion can
be obtained for the armadillo and the lady of Elche (see the respective best views
shown in Figure 8 and Figure 18).

8. CONCLUSIONS AND FUTURE WORK

We have defined a unified framework for viewpoint selection and mesh saliency
based on an information channel between a set of viewpoints and the set of polygons
of an object. A new viewpoint quality measure, the viewpoint mutual information,
has been introduced to quantify the representativeness of a view and has been used
to compute viewpoint stability, to select the N best views and to explore the object.
From the inversion of the information channel, we have defined both the informa-
tion and the saliency associated with each polygon, and we have also calculated
the saliency of a viewpoint. Finally, the viewpoint mutual information has been
extended by incorporating the saliency as an importance factor. Many experiments
have demonstrated the robustness of our approach and the good behavior of the
proposed measures. There are many research issues that are worth exploring. First,
we plan to extend our viewpoint framework to indoor scenes. Second, we wish to
analyze how our saliency approach can guide the object exploration. Third, we will
investigate the incorporation of importance (for example, obtained from saliency or
lighting) to the input distribution. Fourth, we will explore how the best viewpoint
selection can be fine-tuned with other perceptual characteristics such as stability.
Finally, the mutual information of the viewpoint information channel can also be
interpreted as the viewpoint-based shape complexity and could be used for object
recognition tasks.
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Polonsky, O., Patanè, G., Biasotti, S., Gotsman, C., and Spagnuolo, M. 2005. What’s in
an image? The Visual Computer 21, 8-10, 840–847.

Sbert, M., Plemenos, D., Feixas, M., and González, F. 2005. Viewpoint quality: Measures
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