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Viewpoint selection is an emerging area in computer graphics with applications in fields such
as scene exploration, image-based modeling, and volume visualization. In particular, best view
selection algorithms are used to obtain the minimum number of views (or images) in order to
understand or model an object or scene better. In this paper, we present a unified framework for
viewpoint selection and mesh saliency based on the definition of an information channel between
a set of viewpoints (input) and the set of polygons of an object (output). The mutual information
of this channel is shown to be a powerful tool to deal with viewpoint selection, viewpoint stability,
object exploration and viewpoint-based saliency. In addition, viewpoint mutual information is
extended using saliency as an importance factor, showing how perceptual criteria can be incorpo-
rated to our method. Although we use a sphere of viewpoints around an object, our framework is
also valid for any set of viewpoints in a closed scene. A number of experiments demonstrate the
robustness of our approach and the good behavior of the proposed measures.

Categories and Subject Descriptors: I.3.7 [Computer Graphics]: Three-Dimensional Graphics
and Realism

General Terms: Algorithms, Human Factors, Experimentation

Additional Key Words and Phrases: Viewpoint selection, mesh saliency, visual perception, infor-
mation theory

1. INTRODUCTION

In computer graphics, several viewpoint quality measures have been applied in areas
such as scene understanding [Plemenos and Beneyada 1996; Vázquez et al. 2001;
Polonsky et al. 2005], scene exploration [Andújar et al. 2004; Sokolov et al. 2006],
image-based modeling [Vázquez et al. 2003], and volume visualization [Bordoloi
and Shen 2005; Takahashi et al. 2005; Viola et al. 2006; Ji and Shen 2006]. In other
areas, such as object recognition and mobile robotics, best view selection is also a
fundamental task. Many works have demonstrated that the recognition process is
view-dependent [Palmer et al. 1981; Bülthoff et al. 1995; Tarr et al. 1997; Blanz
et al. 1999]. In [Tarr et al. 1997], the authors found that “visual recognition may be
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explained by a view-based theory in which viewpoint-specific representations encode
both quantitative and qualitative features”. In robotics, the simultaneous localiza-
tion and mapping problem (SLAM) requires that the robot decides on its own the
necessary motions to construct the most accurate map possible. In [González-Baños
and Latombe 2002], an algorithm is proposed to guide the robot through a series
of good positions, where ‘good’ refers to the expected amount and quality of the
information that will be revealed at each new location.

The basic question underlying the viewpoint selection study and application is
“what is a ‘good’ scene viewpoint?” Obviously, this question does not have a unique
answer. Depending on our objective, the best viewpoint can be, for instance, the
most representative one or the most unstable one, i.e., the one that maximally
changes when it is moved within its close neighborhood [Bordoloi and Shen 2005].
Palmer et al. [1981] and Blanz et al. [1999] have presented different experiments
demonstrating that observers prefer views (called canonical views) that avoid oc-
clusions and that are off-axis (such as a three-quarter viewpoint), salient (the most
significant characteristics of an object are visible), stable and with a large number
of visible surfaces.

Extending the work initiated in [Vázquez et al. 2001; Sbert et al. 2005], we
present here a unified and robust framework to deal with viewpoint selection and
mesh saliency. Given a set of viewpoints surrounding the object, we define an
information channel between the viewpoints and the polygons of the object. From
this channel, the viewpoint mutual information is used to obtain the best views of an
object, to calculate the stability of a viewpoint, and to guide the object exploration.
Then, we reverse the channel and we compute both the information and the saliency
associated with each polygon. Finally, this polygonal saliency is used to calculate
how salient is a viewpoint and is incorporated to viewpoint mutual information
to drive the viewpoint selection. Our framework is also applicable to any set of
viewpoints in a closed scene and, although only the geometric properties of an
object have been considered, other aspects such as lighting could be incorporated.

The main contributions of this paper can be summarized as follows. First, an
information channel between the set of viewpoints and the polygons of the object
is defined (Section 3). Second, a new viewpoint quality measure based on mutual
information is introduced (Section 3) and some of its fundamental properties are
used to deal with viewpoint similarity and stability (Section 4). Third, a new best
view selection algorithm, also used for viewpoint clustering and object exploration,
is presented (Section 5). Fourth, the information and the saliency associated with
each polygon are defined from the reversion of the viewpoint channel. From the
polygonal saliency, the viewpoint saliency is also computed (Section 6). Fifth,
the viewpoint quality measure is extended by incorporating the saliency as an
importance factor (Section 7).

2. BACKGROUND

In this section we review some basic concepts of information theory (see [Cover and
Thomas 1991]) and related work.
ACM Transactions on Applied Perception, Vol. V, No. N, Month 20YY.
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2.1 Information-Theoretic Concepts

Let X be a finite set, let X be a random variable taking values x in X with
distribution p(x) = Pr[X = x]. Likewise, let Y be a random variable taking values
y in Y. An information channel between two random variables (input X and output
Y ) is characterized by a probability transition matrix (composed of conditional
probabilities) which determines the output distribution given the input.

The Shannon entropy H(X) of a random variable X is defined by

H(X) = −
∑

x∈X
p(x) log p(x). (1)

It is also denoted by H(p) and measures the average uncertainty of a random vari-
able X. All logarithms are base 2 and entropy is expressed in bits. The convention
that 0 log 0 = 0 is used. The conditional entropy is defined by

H(Y |X) = −
∑

x∈X
p(x)

∑

y∈Y
p(y|x) log p(y|x), (2)

where p(y|x) = Pr[Y = y|X = x] is the conditional probability. The conditional
entropy H(Y |X) measures the average uncertainty associated with Y if we know
the outcome of X. In general, H(Y |X) 6= H(X|Y ), and H(X) ≥ H(X|Y ) ≥ 0.

The mutual information (MI) between X and Y is defined by

I(X,Y ) = H(X)−H(X|Y ) =
∑

x∈X
p(x)

∑

y∈Y
p(y|x) log

p(y|x)
p(y)

. (3)

It is a measure of the shared information between X and Y . It can be seen that
I(X, Y ) = I(Y,X) ≥ 0. A fundamental property of MI is given by the data pro-
cessing inequality which can be expressed in the following way: if X → Y → Z is a
Markov chain, i.e., p(x, y, z) = p(x)p(y|x)p(z|y), then

I(X, Y ) ≥ I(X, Z). (4)

This result demonstrates that no processing of Y , deterministic or random, can
increase the information that Y contains about X.

The relative entropy or Kullback-Leibler distance between two probability distri-
butions p = {p(x)} and q = {q(x)} defined over X is given by

KL(p|q) =
∑

x∈X
p(x) log

p(x)
q(x)

, (5)

where, from continuity, we use the convention that 0 log 0 = 0, p(x) log p(x)
0 = ∞ if

p(x) > 0, and 0 log 0
0 = 0. The relative entropy KL(p|q) is a divergence measure

between the true probability distribution p and the target probability distribution
q. It can be proved that KL(p|q) ≥ 0.

A convex function f on the interval [a, b] fulfils the Jensen inequality:∑n
i=1 λif(xi) − f (

∑n
i=1 λixi) ≥ 0 , where 0 ≤ λ ≤ 1,

∑n
i=1 λi = 1, and xi ∈

[a, b]. For a concave function, the inequality is reversed. If f is substituted by
the Shannon entropy, which is a concave function, we obtain the Jensen-Shannon
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inequality [Burbea and Rao 1982]:

JS(π1, π2, . . . , πN ; p1, p2, . . . , pN ) ≡ H

(
N∑

i=1

πipi

)
−

N∑

i=1

πiH(pi) ≥ 0, (6)

where JS(π1, π2, . . . , πN ; p1, p2, . . . , pN ) is the Jensen-Shannon divergence of prob-
ability distributions p1, p2, . . . , pN with prior probabilities or weights π1, π2, . . . , πN ,
fulfilling

∑N
i=1 πi = 1. The JS-divergence measures how ‘far’ are the probabilities

pi from their likely joint source
∑N

i=1 πipi and equals zero if and only if all the pi are
equal. It is important to note that the JS-divergence is identical to I(X, Y ) when
πi = p(xi) and pi = p(Y |xi) for each xi ∈ X , where p(X) = {p(xi)} is the input
distribution, p(Y |xi) = {p(y1|xi), p(y2|xi), . . . , p(yM |xi)}, N = |X |, and M = |Y|
[Burbea and Rao 1982; Slonim and Tishby 2000b].

2.2 Related Work

We review now some viewpoint quality measures for polygonal models. In [Ple-
menos and Beneyada 1996], the quality of a viewpoint v of a scene is computed
using the heuristic measure (HM) given by

C(v) =

∑n
i=1d Pi(v)

Pi(v)+1e
n

+
∑n

i=1 Pi(v)
r

, (7)

where Pi(v) is the number of pixels corresponding to the polygon i in the image
obtained from the viewpoint v, r is the total number of pixels of the image (reso-
lution of the image), and n is the total number of polygons of the scene. In this
formula, dxe denotes the smallest integer, greater than or equal to x. The first
term in (7) gives the fraction of visible surfaces with respect to the total number of
surfaces, while the second term is the ratio between the projected area of the scene
(or object) and the screen area (thus, its value is 1 for a closed scene).

From (1), the viewpoint entropy (VE) [Vázquez et al. 2001] has been defined from
the relative area of the projected polygons over the sphere of directions centered at
viewpoint v. Thus, the viewpoint entropy was defined by

Hv = −
Nf∑

i=0

ai

at
log

ai

at
, (8)

where Nf is the number of polygons of the scene, ai is the projected area of polygon
i over the sphere, a0 represents the projected area of background in open scenes,
and at =

∑Nf

i=0 ai is the total area of the sphere. The maximum entropy is ob-
tained when a certain viewpoint can see all the polygons with the same projected
area. The best viewpoint is defined as the one that has maximum entropy. In
molecular visualization, both maximum and minimum entropy views show relevant
characteristics of a molecule [Vázquez et al. 2006].

From (5), a new viewpoint quality measure, called viewpoint Kullback-Leibler
distance (VKL) [Sbert et al. 2005], has been defined by

KLv =
Nf∑

i=1

ai

at
log

ai

at

Ai

AT

, (9)

ACM Transactions on Applied Perception, Vol. V, No. N, Month 20YY.
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where ai is the projected area of polygon i, at =
∑Nf

i=1 ai, Ai is the actual area
of polygon i and AT =

∑Nf

i=1 Ai is the total area of the scene or object. The
VKL measure is interpreted as the distance between the normalized distribution of
projected areas and the ‘ideal’ projection, given by the normalized distribution of
the actual areas. In this case, the background can not be taken into account. The
minimum value 0 is obtained when the normalized distribution of projected areas
is equal to the normalized distribution of actual areas. Thus, to select views of high
quality means to minimize KLv.

Apart from the previous references on viewpoint quality measures, Polonsky et al.
[2005] describe a number of different ways to measure the goodness of a view of
an object. After analyzing different view descriptors, they conclude that no single
descriptor does a perfect job and possibly a combination of them would amplify the
advantage that each one has. Given a sphere of viewpoints, Yamauchi et al. [2006]
compute the similarity between each two disjoint views using Zernike moments
analysis and obtain a similarity weighted spherical graph. A view is considered
to be stable if all edges incident on its viewpoint in the spherical graph have high
similarity weights. Andújar et al. [2004] and Sokolov et al. [2006] present two dif-
ferent exploration algorithms guided by viewpoint entropy and the total curvature
of a visible surface, respectively. In the volume rendering field, Bordoloi and Shen
[2005], Takahashi et al. [2005] and Ji and Shen [2006] use an extended version of
viewpoint entropy and Viola et al. [2006] introduce the viewpoint mutual informa-
tion. Castelló et al. [2007] use viewpoint entropy as a perceptual measure for mesh
simplification.

Based on the investigation on canonical views, Gooch et al. [2001] present a new
method for constructing images, where the viewpoint is chosen to be both off-axis
and ‘natural’, and Lu et al. [2006] obtain the viewing direction from the combination
of factors such as saliency, occlusion, stability and familiarity. Lee et al. [2005] have
introduced the saliency as a measure for regional importance for graphics meshes
and Kim and Varshney [2006] presented a visual-saliency-based operator to enhance
selected regions of a volume. Gal and Cohen-Or [2006] introduced a method for
partial matching of surfaces by using the abstraction of salient geometric features
and a method to construct them.

3. VIEWPOINT CHANNEL

In this section, we introduce an information channel between a set of viewpoints
and the set of polygons of an object to deal with viewpoint selection. Then we
define the viewpoint mutual information to select the most representative views of
an object. At the end of this section we compare the behavior of this measure with
the ones reviewed in Section 2.

3.1 Viewpoint Mutual Information

Our viewpoint selection framework is constructed from an information channel
V → O between the random variables V (input) and O (output), which repre-
sent, respectively, a set of viewpoints and the set of polygons of an object (see
Figure 1(a)). This channel, which we call viewpoint channel, is defined by a con-
ditional probability matrix obtained from the projected areas of polygons at each

ACM Transactions on Applied Perception, Vol. V, No. N, Month 20YY.
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(a) Viewpoint sphere. (b) Probability distributions of channel V → O.

Fig. 1. Viewpoint information channel.

viewpoint. Viewpoints will be indexed by v and polygons by o. Throughout this
paper, the capital letters V and O as arguments of p() will be used to denote prob-
ability distributions. For instance, while p(v) will denote the probability of a single
viewpoint v, p(V ) will represent the input distribution of the set of viewpoints.

The viewpoint channel can be interpreted as an observation channel where the
conditional probabilities represent the probability of seeing a determined polygon
from a given viewpoint (see Figure 1(b)). The three basic elements of this channel
are:

—Conditional probability matrix p(O|V ), where each element p(o|v) = ao

at
is de-

fined by the normalized projected area of polygon o over the sphere of directions
centered at viewpoint v. Conditional probabilities fulfil

∑
o∈O p(o|v) = 1. In our

approach, background is not taken into account but it could be considered as
another polygon.

—Input distribution p(V ), which represents the probability of selecting a viewpoint.
In our experiments, p(V ) will be obtained from the normalization of the projected
area of the object at each viewpoint. This can be interpreted as the probability
that a random ray originated at v hits (sees) the object. This assignation is
consistent with the objective of selecting the viewpoints which see more projected
area. Let us remember that this is a characteristic of a canonical view (see Section
1). The input distribution can also be interpreted as the importance assigned to
each viewpoint v. For instance, the input distribution could also be defined by
p(v) = 1

Nv
, where Nv is the number of viewpoints.

—Output distribution p(O), defined by

p(o) =
∑

v∈V
p(v)p(o|v), (10)

which represents the average projected area of polygon o, i.e., the probability of
polygon o to be hit (seen) by a random ray cast from the viewpoint sphere.

From the previous definitions, the conditional entropy (2) is given by the average
of all viewpoint entropies:

H(O|V ) = −
∑

v∈V
p(v)

∑

o∈O
p(o|v) log p(o|v) =

∑

v∈V
p(v)H(O|v), (11)

ACM Transactions on Applied Perception, Vol. V, No. N, Month 20YY.
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where H(O|v) = −∑
o∈O p(o|v) log p(o|v) is the viewpoint entropy Hv (8) and mea-

sures the degree of uniformity of the projected area distribution at viewpoint v.
Let us observe that Hv has been now rewritten in a different form. Both entropies
H(O|v) and H(O|V ) tend to infinity when polygons are infinitely refined. This
makes these measures very sensitive to the discretisation of the object and in gen-
eral not appropriate to evaluate the quality of a viewpoint.

We now devote our attention to the mutual information (3) between V and O,
that expresses the degree of dependence or correlation between the set of viewpoints
and the object. From (3), mutual information is given by

I(V,O) =
∑

v∈V
p(v)

∑

o∈O
p(o|v) log

p(o|v)
p(o)

=
∑

v∈V
p(v)I(v, O), (12)

where we define

I(v, O) =
∑

o∈O
p(o|v) log

p(o|v)
p(o)

(13)

as the viewpoint mutual information (VMI), which gives us the degree of depen-
dence between the viewpoint v and the set of polygons, and it is a measure of the
quality of viewpoint v. Consequently, mutual information I(V,O) can be inter-
preted as the average viewpoint quality. Quality is considered here equivalent to
representativeness. It is also important to indicate that the level of resolution of
the viewpoint sphere will determine the accuracy of the measures.

In our framework, the best viewpoint is defined as the one that has minimum
VMI. High values of the measure mean a high dependence between viewpoint v and
the object, indicating a highly coupled view (for instance, between the viewpoint
and a small number of polygons with low average visibility). On the other hand,
the lowest values correspond to the most representative or relevant views, showing
the maximum possible number of polygons in a balanced way.

3.2 Discussion

Note that I(v, O) = KL(p(O|v)|p(O)), where p(O|v) is the conditional probability
distribution between v and the object and p(O) is the marginal probability distri-
bution of O, which in our case corresponds to the distribution of the average of
projected areas. It is worth observing that p(O) plays the role of the target distri-
bution in the KL distance and also the role of the optimal distribution since our
objective is that p(O|v) becomes similar to p(O) to obtain the best views. On the
other hand, this role agrees with intuition since p(O) is the average visibility of
polygon o over all viewpoints, i.e., the mixed distribution of all views, and we can
think of p(O) as representing, with a single distribution, the knowledge about the
scene. Note the difference between VMI (13) and VKL (9), due to the fact that in
the last case the distance is taken with respect to the actual areas.

In [Viola et al. 2006], it has been shown that the main advantage of VMI over
VE is its robustness to deal with any type of discretisation or resolution of the
volumetric dataset. The same advantage can be observed for polygonal data. Thus,
while a highly refined mesh will attract the attention of VE, VMI will be almost
insensitive to changes in the mesh resolution. This behavior of both measures with

ACM Transactions on Applied Perception, Vol. V, No. N, Month 20YY.
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respect to the discretization can be deduced from the mathematical analysis of
VE and VMI. For instance, let us assume that a regular polygon o of the object is
subdivided into two equal parts o1 and o2 such that p(o1|v) = p(o2|v), p(o1) = p(o2),
p(o|v) = p(o1|v) + p(o2|v) and p(o) = p(o1) + p(o2). Assuming that only the term
referred to polygon o can change in the formulas for VE (8) and VMI (13), we
analyze their variation after the subdivision of o. The variation of VE is given by

δH(O|v) = −p(o1|v) log p(o1|v)− p(o2|v) log p(o2|v)− (−p(o|v) log p(o|v)) = p(o|v).

Therefore, VE increases with a value p(o|v) after the subdivision. On the other
hand, the variation of VMI is given by

δI(v,O) = p(o1|v) log
p(o1|v)
p(o1)

+ p(o2|v) log
p(o2|v)
p(o2)

− p(o|v) log
p(o|v)
p(o)

= 0. (14)

Thus, VMI remains invariant to the proposed subdivision. In general, if we compare
both measures for different discretisations, mutual information will give similar
results and VE will show an erratic behavior. Note that HM is also highly dependent
on the discretisation, since the first term in (7) is given by the quotient between
the number of visible polygons and the total number of polygons. The behavior of
all these measures with respect to the discretisation will be experimentally shown
in the next section.

3.3 Results

In this section, the behavior of VMI (13) is compared with the one of HM (7),
VE (8), and VKL (9). To compute these viewpoint quality measures, we need a
preprocess step to estimate the projected area of the visible polygons of the object
at each viewpoint. Before projection, a different color is assigned to each polygon.
The number of pixels with a given color divided by the total number of pixels
projected by the object gives us the relative area of the polygon represented by this
color (conditional probability p(o|v)). Although all these measures are sensitive to
the size of the viewpoint sphere with respect to the object, in this paper we have
not taken into account this fact. For comparison purposes, all measures have been
computed without taking into account the background.

In our experiments, all the objects are centered in a sphere of 642 viewpoints
built from the recursive discretisation of an icosahedron and the camera is looking
at the center of this sphere. In Table I we show the number of polygons of the
models used in this section and the cost of the preprocess step, i.e., the cost of
computing the probability distributions p(V ), p(O|V ) and p(O). Even though a
large number of viewpoints have been used, a high quality can be also achieved
with much less viewpoints and the consequent reduction of timings. To show the
behavior of the measures, the sphere of viewpoints is represented by a color map,
where red and blue colors correspond respectively to the best and worst views.
Note that a good viewpoint corresponds to a high value for both HM (7) and VE
(8), and to a low value for both VKL (9) and VMI (13). Figure 2 shows the
interface of our viewpoint software created using the 3D-rendering engine Ogre3D
(http://www.ogre3d.org). Our tests were run on a 3GHz machine with 2 GB
RAM and an Nvidia GeForce 8800 GTX with 768 MB.

To evaluate the performance of the four viewpoint quality measures presented,
ACM Transactions on Applied Perception, Vol. V, No. N, Month 20YY.
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Fig. 2. The figure shows the interface of our viewpoint software.

Cow Coffee cup Ship Lady of Elche

Number of triangles 9593 43935 47365 51978

Computational cost 41 sec 81 sec 62 sec 80 sec

Table I. Number of triangles of the models used and computational cost of the preprocess step for
each model.

(a) (b) (c)

Fig. 3. Cow, ship and lady of Elche wireframe models.

five models have been used: a cow (Figure 3(a)), two coffee-cup-and-dish with two
different discretisations of the dish (Figures 5(i.a) and 5(ii.a)), a ship (Figure 3(b)),
and the lady of Elche (Figure 3(c)). Figure 4 has been organized as follows. Rows
(i), (ii) and (iii) show, respectively, the behavior of HM, VE and VMI measures.
Columns (a) and (b) show, respectively, the best and worst views, and columns (c)
and (d) show two different projections of the viewpoint spheres. Figure 4 illustrates
how VMI selects better views than both HM and VE. Observe how VE chooses
to see the most highly discretised parts of the cow. The same occurs with HM,
although this one also searches for a view with higher projected area. While the
worst views for the HM and VE measures correspond to the ones that see the less
discretised parts, in the VMI case a true restricted view is obtained.

Figure 5 shows the behavior of the HM, VE and VMI measures when the dis-
cretisation of the object varies outstandingly. Rows (i) and (ii) show the viewpoint
spheres computed respectively for the coffee-cup-and-dish model of Figure 5(i.a)
and for the same model with a more refined dish (Figure 5(ii.a)). We can clearly
observe how the spheres obtained from HM and VE change according to the dis-
cretisation variation, whereas VMI spheres are almost insensitive to this variation.

ACM Transactions on Applied Perception, Vol. V, No. N, Month 20YY.
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(i.a) (i.b) (i.c) (i.d)

(ii.a) (ii.b) (ii.c) (ii.d)

(iii.a) (iii.b) (iii.c) (iii.d)

Fig. 4. (a) The most representative and (b) the most restricted views, and (c-d) the viewpoint
spheres obtained respectively from the (i) HM, (ii) VE and (iii) VMI measures. Red colors on the
sphere represent the highest quality views and blue colors represent the lowest quality views.

(i.a) (i.b) (i.c) (i.d)

(ii.a) (ii.b) (ii.c) (ii.d)

Fig. 5. Column (a) shows the models used to compute the viewpoint spheres. These are obtained
respectively from (b) HM, (c) VE and (d) VMI measures.

The different behavior between VKL (a-b) and VMI (c-d) is shown in Figure 6.
Remember that the main difference between VMI and VKL is that while the former
computes the distance between the projected areas of the polygons and the average
area seen by the set of viewpoints, the later calculates the distance with respect to
the actual areas of polygons. Due to this fact, the reliability of VKL is outstandingly
affected by the existence of many non visible or poorly visible polygons, as in the
case of the ship and lady of Elche models.
ACM Transactions on Applied Perception, Vol. V, No. N, Month 20YY.
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(i.a) (i.b) (i.c) (i.d)

(ii.a) (ii.b) (ii.c) (ii.d)

Fig. 6. Viewpoint spheres obtained respectively from the (a-b) VKL and (c-d) VMI measures.

4. VIEWPOINT SIMILARITY AND STABILITY

As we have mentioned in Section 1, a basic property of a canonical view is its
stability [Blanz et al. 1999]. That is, observers prefer a view which minimally
changes when it is moved within its nearest neighborhood. In this section, viewpoint
stability is defined from the notion of dissimilarity between two viewpoints, which is
given by the Jensen-Shannon divergence between their respective distributions. The
use of Jensen-Shannon as a measure of view similarity has been previously proposed
by Bordoloi and Shen [2005] in the volume rendering field. In our approach, this
measure appears naturally from the variation of the viewpoint quality (VMI).

If we apply the data processing inequality (4) to the channel V → O, we
find that any clustering over V or O, respectively denoted by V̂ and Ô, will re-
duce I(V, O). Therefore, if neighbor viewpoints (or polygons) are clustered, then
I(V̂ , O) ≤ I(V,O) (or I(V, Ô) ≤ I(V,O)). The result of clustering (or merging)
two viewpoints vi and vj is defined as a ‘virtual’ viewpoint v̂ ≡ vi ⊕ vj such that

p(v̂) = p(vi ⊕ vj) = p(vi) + p(vj) (15)

and

p(o|v̂) = p(o|vi ⊕ vj) =
p(vi)p(o|vi) + p(vj)p(o|vj)

p(v̂)
. (16)

The reduction of MI when two viewpoints vi and vj are merged is given by

δI(vi, vj) = I(V,O)− I(V̂ , O)
= (p(vi)I(vi, O) + p(vj)I(vj , O))− p(v̂)I(v̂, O)

= p(v̂)
(

p(vi)
p(v̂)

I(vi, O) +
p(vj)
p(v̂)

I(vj , O)− I(v̂, O)
)

= p(v̂)D(vi, vj), (17)

where we define

D(vi, vj) =
p(vi)
p(v̂)

I(vi, O) +
p(vj)
p(v̂)

I(vj , O)− I(v̂, O) (18)
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(i.a) (i.b) (i.c) (d.i)

(ii.a) (ii.b) (ii.c) (d.ii)

(iii.a) (iii.b) (iii.c) (d.ii)

Fig. 7. The (a) most stable and (b) most unstable viewpoints, and (c-d) unstability spheres
obtained for the (i) coffee-cup-and-dish, (ii) cow and (iii) lady of Elche models. Red colors on the
sphere represent high unstability values, blue colors represent low unstability values.

as the viewpoint dissimilarity between vi and vj . That is, the loss of information
when two viewpoints are merged is interpreted as the dissimilarity between them.
Note that the dissimilarity will be null when the two viewpoints capture the same
distribution of projected areas: if p(O|vi) = p(O|vj), then δIvi,vj = 0.

It can be shown (see [Slonim and Tishby 2000a]) that the viewpoint dissimilarity
can also be written as

D(vi, vj) = JS

(
p(vi)
p(v̂)

,
p(vj)
p(v̂)

; p(O|vi), p(O|vj)
)

, (19)

where the second term is the Jensen-Shannon divergence (6) between the distri-
butions p(O|vi) and p(O|vj) captured by vi and vj with weights p(vi)

p(v̂)
and p(vj)

p(v̂)
,

respectively. If two views are very similar, i.e., the JS-divergence between them is
small, the channel can be simplified by substituting these two viewpoints by their
merging, without a significant loss of information.

Two interesting properties follow:

—It can be easily seen that the clustering of all viewpoints would give δI = I(V, O)
and, thus, I(V̂ , O) = 0 (see Section 2.1).

—H(O) = H(O|V ) + I(V, O) = H(O|V̂ ) + I(V̂ , O), where H(O) is the entropy of
p(O). Note that if two viewpoints are clustered the decrease of I(V, O) is equal
to the increase of H(O|V ) since H(O) remains constant (the discretisation of the
object has not been changed).

View unstability was defined by Bordoloi and Shen [2005] as the maximum change
ACM Transactions on Applied Perception, Vol. V, No. N, Month 20YY.
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in view that occur when the camera position is shifted within a small neighborhood.
Thus, a small change corresponds to a stable viewpoint and a large change to
an unstable one. We now define the unstability of a viewpoint v as the average
variation of dissimilarity between v and its neighbor viewpoints. That is, vi is a
stable viewpoint if p(O|vi) is close to the probability distributions p(O|vj) of its
neighbors, where vj stands for a neighbor of vi. Thus, the viewpoint unstability of
vi is defined by

U(vi) =
1

Nn

Nn∑

j=1

D(vi, vj), (20)

where vj is a neighbor of vi and Nn is the number of neighbors of vi.
Figure 7 shows the behavior of the viewpoint stability measure for the coffee-cup-

and-dish, cow and lady of Elche models. Observe how the results obtained agree
with intuition.

5. BEST VIEW SELECTION AND OBJECT EXPLORATION

In order to understand or model an object, we are interested in selecting a set
of representative views. This set has to provide a complete representation of the
object, i.e., a simplified representation of the information provided by all viewpoints.
In this section, new algorithms based on the concepts introduced in Sections 3 and
4 are applied to both the selection of the N best representative views and object
exploration.

5.1 Selection of N Best Views

With the goal of obtaining the best representation of the object using the minimum
number of views, a new viewpoint selection algorithm based on VMI is presented. If
we look for a good set of views within the set of viewpoints, we will obtain the most
representative set by selecting the views such that their mixing (merging) minimizes
the distance to the target distribution p(O). We consider that this mixing provide
us with a balanced view of the object.

Thus, our selection algorithm will select the N viewpoints so that their merging
v̂ minimizes the viewpoint mutual information I(v̂, O). Due to the fact that this
optimization algorithm is NP-complete, we adopt a greedy strategy by selecting
successive viewpoints that minimize I(v̂, O). That is, at each merging step we aim
to maximize the JS-divergence between the set of previously merged viewpoints
and the new viewpoint to be selected. This algorithm permits us to find in an
automated and efficient way the minimal set of views which represent the object or
scene.

The algorithm proceeds as follows. First, we select the best viewpoint v1 with
distribution p(O|v1) corresponding to the minimum I(v, O). Next, we select v2 such
that the mixed distribution p(v1)p(O|v1)+p(v2)p(O|v2) will minimize I(v̂, O), where
v̂ represents the clustering of v1 and v2. At each step, a new mixed distribution
p(v1)p(O|v1) + p(v2)p(O|v2) + . . . + p(vn)p(O|vn) is produced until the VMI-ratio

given by I(v̂,O)
I(V,O) is lower than a given threshold or a fixed number of views is achieved.

This ratio can be interpreted as a measure of the goodness or representativeness of
the selected viewpoints.

ACM Transactions on Applied Perception, Vol. V, No. N, Month 20YY.
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(i)

(ii)

(iii)

Fig. 8. The six most representative views selected by the VMI algorithm for the (i) coffeecup-
and-dish, (ii) cow, and (iii) lady of Elche models.

Figure 8 show the six best views obtained with our selection algorithm for three
different models. In Table II, for each new viewpoint selected we show the VMI
of the clustering of selected viewpoints (I(v̂, O)) and the corresponding VMI-ratio.
For instance, to achieve a degree of representativeness given by a VMI-ratio lower
than 0.1, six views are needed for the coffee-cup-and-dish and lady of Elche models
but only four for the cow model. In addition, Table II shows the computation
cost of selecting the six best views. The behavior of our algorithm is also shown in
Figure 9, where we observe how the VMI values obtained from the successive mixed
distributions (corresponding to the views of Figures 8(i), 8(ii), and 8(iii)) converge
asymptotically to zero. It is important to note that the best views for both the
coffee-cup-and-dish and lady of Elche, shown respectively in Figures 8(i.a) and
8(iii.a), are not perceptually pleasant. This is due to the fact that, from a purely
geometric approach, the best views of Figure 8 correspond to the viewpoints that
their projected area distribution is more similar (in the KL sense) to the average
projected area distribution (target distribution). This problem will be tackled in
the next sections, introducing perceptual criteria to select the best views.

From the N best representative views, a simple greedy clustering algorithm
which partitions the sphere of viewpoints assigning each viewpoint to the ‘near-
est’ best viewpoint is proposed. This assignation is determined by the minimum
JS-divergence between the viewpoint to be clustered and the best views. Using this
ACM Transactions on Applied Perception, Vol. V, No. N, Month 20YY.



Viewpoint Selection and Mesh Saliency · 15

Cow Coffee cup Lady of Elche

Best view VMI Ratio VMI Ratio VMI Ratio

1 1.374 0.860 1.471 0.730 1.355 0.703
2 0.403 0.252 0.692 0.343 0.644 0.334
3 0.257 0.161 0.346 0.172 0.458 0.237
4 0.151 0.094 0.262 0.130 0.275 0.143
5 0.111 0.069 0.207 0.103 0.219 0.113
6 0.087 0.054 0.190 0.095 0.153 0.079

Cost 10 sec 36 sec 38 sec

Table II. For each model, we show the VMI values of the merging of all selected viewpoints and
the corresponding VMI-ratio.

Fig. 9. VMI values obtained from the successive mixed distributions corresponding to the views
of Figures 8(i), 8(ii), and 8(iii).

(a) (b) (c) (d)

Fig. 10. Viewpoint clustering spheres with six clusters for the (a) coffee-cup-and-dish, (b) cow,
(c) ship and (d) lady of Elche models.
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(i.a) (i.b) (i.c) (i.d)

(ii.a) (ii.b) (ii.c) (ii.d)

Fig. 11. (i) Guided and (ii) exploratory tours around the coffee-cup-and-dish and ship models,
respectively.

method, the centroids of the respective clusters are given by the most representa-
tive viewpoints. In Figure 10, we show the behavior of this clustering algorithm for
the (i) coffee-cup, (ii) cow, (iii) ship and (iv) lady of Elche models.

5.2 Object Exploration

In this section, two greedy algorithms are presented to explore the object. In
both cases, the best viewpoint (minimum VMI) is the starting point of the ob-
ject exploration. In the first algorithm (guided tour), the path visits a set of
N preselected best views which ensure a good exploration of the object. In the
second algorithm (exploratory tour), the successive viewpoints are selected us-
ing the maximum novelty criterion with respect to the parts seen of the object.
In http://www.gametools.org/Viewpoint/index.html, several videos show the
performance of these methods.

Guided tour. First, we obtain the list of the N best viewpoints. Then, the
algorithm starts at the best viewpoint and visits all the other best viewpoints
following the minimum path. This is obtained as follows. From the best viewpoint,
we find the nearest (with minimum JS-divergence) best viewpoint in the list. This
is now the target viewpoint. Thus, from the best viewpoint, successive neighbor
viewpoints will be selected so that, without any viewpoint repetition, their distance
to the target viewpoint is minimum. The distance between two viewpoints is always
calculated from the JS-divergence. When the first target viewpoint is achieved, we
select a new target one among the rest of best viewpoints in the list. Then we
proceed in the same way until the last best view is reached or the cycle is completed
arriving at the initial best viewpoint. Figure 11(i) shows the exploration of the
coffee-cup-and-dish and the lady of Elche models from the six best views obtained
in each case (the blue, yellow and red light points correspond to the starting,
intermediate and ending viewpoints, respectively). Two different projections of the
sphere are shown to see the path better.
ACM Transactions on Applied Perception, Vol. V, No. N, Month 20YY.
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Exploratory tour. From [Itti and Baldi 2005], we know that maximum novelty
or surprise attracts the attention of an observer. Following this principle, the
algorithm selects the best viewpoint and then successively visits the (non-visited)
neighbor viewpoints that minimize the I(v̂, O) of all visited viewpoints. This means
that at each step we select the viewpoint that maximizes its JS-divergence with
respect to all visited viewpoints and, consequently, the most dissimilar (surprising)
viewpoint is selected. This procedure stops whether the VMI-ratio is lower than a
given threshold. Figure 11(ii) shows the result of the exploration of the coffee-cup-
and-dish and the lady of Elche models.

6. VIEW-BASED POLYGONAL INFORMATION AND SALIENCY

As we have seen in Section 3, the information associated with each viewpoint has
been obtained from the definition of the channel between the sphere of viewpoints
and the polygons of the object. Now, the information associated with a polygon
will be defined as the contribution of this polygon to the MI of this channel. To
illustrate this new approach, the reversed channel O → V is considered, so that O
is the input and V the output.

6.1 View-based Polygonal Information

From the Bayes theorem p(v, o) = p(v)p(o|v) = p(o)p(v|o), the mutual informa-
tion (12) can be rewritten as

I(O, V ) =
∑

o∈O
p(o)

∑

v∈V
p(v|o) log

p(v|o)
p(v)

=
∑

o∈O
p(o)I(o, V ), (21)

where we define

I(o, V ) =
∑

v∈V
p(v|o) log

p(v|o)
p(v)

(22)

as the polygonal mutual information (PMI), which represents the degree of corre-
lation between the polygon o and the set of viewpoints, and can be interpreted as
the information associated with polygon o. Analogous to VMI, low values of PMI
correspond to polygons that ‘see’ the maximum number of viewpoints in a balanced
way, i.e., p(V |o) is close to p(V ). The opposite happens for high values. Let us
remind that MI is invariant to the reversion of the channel since I(V,O) = I(O, V ).

In Figure 12, we show the information maps of (i) the coffee-cup-and-dish, (ii)
mini, (iii) Hebe and (iv) lady of Elche models. To obtain these images, the PMI
has been normalized between 0 and 1 and subtracted from 1, because low values of
PMI (represented in the grey-map by values near 1) correspond to non-occluded or
visible (from many viewpoints) polygons, while high values of PMI (represented in
the grey-map by values near 0) correspond to occluded polygons. In Figure 12 we
show the polygonal information values computed from the center of each polygon,
while in Figure 13 these values have been linearly interpolated at the vertexes of
the polygons. Observe that these maps look as an ambient occlusion or obscurance
map (see [Landis 2002; Christensen 2002; Zhukov et al. 1998; Iones et al. 2003]).
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(a) (b) (c) (d)

Fig. 12. View-based polygonal information for the (a) coffeecup-and-dish, (b) mini, (c) Hebe and
(d) lady of Elche models.

Fig. 13. The figure shows the application of polygonal information as ambient occlusion.

In Figure 13 we show one example of the use of polygonal information as ambient
occlusion, where this is added to a textured model.

6.2 View-based Mesh Saliency

Itti et al. [1998] maintain that visual attention is saliency-dependent and use a
saliency map to represent the conspicuity or saliency at every location in the visual
field by a scalar quantity and to guide the selection of attended locations. In [Lee
et al. 2005], mesh saliency is captured from surface curvatures and is considered as
a perception-inspired measure of regional importance and has been used in graphics
applications such as mesh simplification and viewpoint selection. We now propose
a new definition of mesh saliency based on PMI.

Analogous to the view unstability (Section 4), defined from the dissimilarity be-
tween two views, we now define the view-based mesh saliency from the dissimilarity
between two polygons, which is given by the variation of polygonal mutual informa-
tion when two polygons are clustered. In this approach, mesh saliency is formulated
in terms of how the polygons ‘see’ the set of viewpoints. Thus, following the same
scheme developed in Section 4, the saliency of a polygon is defined as the average
dissimilarity between this polygon and its neighbors.

Similarly to (17), the reduction of MI when two polygons oi and oj are clustered
is given by

δI(oi, oj) = I(V, O)− I(V, Ô)
ACM Transactions on Applied Perception, Vol. V, No. N, Month 20YY.



Viewpoint Selection and Mesh Saliency · 19

= (p(oi)I(oi, V ) + p(oj)I(oj , V ))− p(ô)I(ô, V )

= p(ô)
(

p(oi)
p(ô)

I(oi, V ) +
p(oj)
p(ô)

I(oj , V )− I(ô, V )
)

= p(ô)D(oi, oj), (23)

where ô = oi⊕oj is the result of clustering oi and oj and the polygonal dissimilarity
between oi and oj is defined by

D(oi, oj) =
p(oi)
p(ô)

I(oi, V ) +
p(oj)
p(ô)

I(oj , V )− I(ô, V ). (24)

This dissimilarity can also be written as

D(oi, oj) = JS

(
p(oi)
p(ô)

,
p(oj)
p(ô)

; p(V |oi), p(V |oj)
)

, (25)

where the second term is the Jensen-Shannon divergence (6) between p(V |oi) and
p(V |oj) with weights p(oi)

p(ô)
and p(oj)

p(ô)
, respectively. Hence, two polygons are ‘similar’

when the JS-divergence between them is small.
Some interesting properties follow:

—If two polygons are very ‘similar’, their clustering involves a small loss of mutual
information. If p(V |oi) = p(V |oj), then δI(oi, oj) = 0.

—It can be easily seen that the clustering of all polygons would give δI = I(V, O)
and, thus, I(Ô, V ) = 0.

—H(V ) = H(V |O) + I(O, V ) = H(V |Ô) + I(Ô, V ), where H(V ) is the entropy of
p(V ). The reduction of I(O, V ) is equal to the increase of H(V |O) since H(V )
remains constant (the input distribution of V is not changed).

Similarly to the unstability of a viewpoint (20), the polygonal saliency of oi is
defined by

S(oi) =
1

No

No∑

j=1

D(oi, oj) ≥ 0, (26)

where oj is a neighbor polygon of oi and No is the number of neighbor polygons
of oi. Thus, a polygon o will be salient if the average of JS-divergences between o
and its neighbors is high. On the other hand, a polygon at the center of a smooth
region will have probably low saliency since the polygons of this region will present
small visibility differences with respect to the set of viewpoints.

Figure 14 shows the behavior of our saliency measure. The most salient parts
are represented in red colors and the least salient ones in blue. For instance, the
handle of the coffee-cup or the nose, mouth and eyes of the other models are the
most salient surfaces.

Similarly to [Lee et al. 2005], where mesh saliency was used to select the best
views, we propose a method to calculate the saliency of a viewpoint. Up to now we
have calculated the saliency of a polygon, however we can convey this information to
the sphere of viewpoints, using the conditional probabilities of the reverse channel.
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(a) (b) (c) (d)

Fig. 14. Mesh saliency for the (a) coffee-cup-and-dish, (b) angel, (c) Hebe, and (d) lady of Elche
models.

Hence, the viewpoint saliency is defined by

S(v) =
∑

o∈O
S(o)p(v|o). (27)

Figure 15 show the viewpoint saliency for the coffee-cup-and-dish, Hebe and lady
of Elche models. Columns (a) and (b) illustrate the most salient view and the
least one, respectively. Columns (c) and (d) show two different projections of the
corresponding saliency spheres. Observe how the most salient views show us the
most salient parts of each object.

7. IMPORTANCE-DRIVEN VIEWPOINT SELECTION

As we have mentioned in Section 1, it is desirable that a canonical view of an object
shows its most salient parts and also the largest number of visible surfaces [Palmer
et al. 1981; Blanz et al. 1999]. However, the measures introduced up to now in
this paper only consider the geometric relation between the object and the set of
viewpoints. Therefore, we can not expect that in general the best views fulfill the
desired properties for a canonical view. This fact motivates us to investigate how
perceptual criteria such as saliency can be introduced into our viewpoint selection
framework in order to improve the automatic selection of good views.

In the previous section we have presented a method to compute how salient is a
viewpoint, but we aim now to incorporate the polygonal saliency to the viewpoint
mutual information in order to take into account different factors concerning, re-
spectively, the amount of projected area, the geometric representativeness and the
saliency of a polygon.

First, we demonstrate how the importance can be introduced into the object
space by modifying directly the target distribution p(O). Second, we show the
results obtained by the use of the polygonal saliency as an importance factor in the
viewpoint mutual information measure.

Due to the fact that VMI represents the distance between the projected visibility
distribution p(O|v) from viewpoint v and the target distribution p(O), VMI can
be extended by weighting the target distribution with an importance factor. Thus,
ACM Transactions on Applied Perception, Vol. V, No. N, Month 20YY.
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(i.a) (i.b) (i.c) (i.d)

(ii.a) (ii.b) (ii.c) (ii.d)

(iii.a) (iii.b) (iii.c) (iii.d)

Fig. 15. The (a) most salient and (b) least salient views, and (c-d) saliency spheres obtained for
the (i) coffee-cup-and-dish, (ii) Hebe and (iii) lady of Elche models. Red colors on the sphere
represent high saliency values, blue colors represent low saliency values.

(a) (b) (c) (d)

Fig. 16. Spheres of saliency-based VMI for (a-b) coffee-cup-and-dish and (c-d) lady of Elche mod-
els. Compare these figures with the corresponding ones of Figures 5(i.d)-(ii.d) and Figures 6(ii.c-d),
respectively.

adding importance to our scheme means simply weighting the original target dis-
tribution by an importance factor in order to obtain the new target distribution.
The optimal viewpoint would be the one viewing every polygon proportional to its
average projected area multiplied by its importance. Hence, the extended viewpoint
mutual information (EVMI) is given by

I ′(v, O) =
∑

o∈O
p(o|v) log

p(o|v)
p′(o)

, (28)

where

p′(o) =
p(o)i(o)∑

o∈O p(o)i(o)
(29)

and i(o) is the importance of polygon o. In the experiments of this section, i(o)
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(i)

(ii)

Fig. 17. The six most representative saliency-based views for the (i) coffeecup-and-dish and (ii)
lady of Elche models.

has been substituted by the polygonal saliency S(o). We follow the convention
that if S(o) = 0 then polygon o is not taken into account. Other features, such
as illumination, could be introduced as importance factors in the EVMI. In [Viola
et al. 2006], the object importance has been used to calculate the best views for a
volumetric dataset.

The effects of incorporating saliency in our viewpoint selection framework are
depicted in Figures 16 and 17, which show for the coffee-cup-and-dish and lady
of Elche models the saliency-based VMI spheres and the six most representative
views, obtained with the best view selection algorithm (Section 5.1) using EVMI.
The saliency-based VMI spheres of Figure 16 show the perceptual improvement
obtained with respect to the VMI spheres shown in Figure 5(i.d) and Figures 6(ii.c-
d), respectively. For instance, whereas the VMI-based best view of the coffee-
cup-and-dish shows the bottom of the dish (Figure 8(i)), the best view based on
EVMI with saliency shows a lateral view of the coffee cup (Figure 17(i)) which is
perceptually much better than the one of Figure 8(i). Similarly, the same conclusion
can be obtained for the lady of Elche (see the respective best views shown in
Figure 8(iii) and Figure 17(ii)).

8. CONCLUSIONS AND FUTURE WORK

We have defined a unified framework for viewpoint selection and mesh saliency
based on an information channel between a set of viewpoints and the set of polygons
of an object. A new viewpoint quality measure, the viewpoint mutual information,
has been introduced to quantify the representativeness of a view and has been used
to compute viewpoint stability, to select the N best views and to explore the object.
From the reversion of the information channel, we have defined both the informa-
tion and the saliency associated with each polygon, and we have also calculated
the saliency of a viewpoint. Finally, the viewpoint mutual information has been
extended by incorporating the saliency as an importance factor. Many experiments
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have demonstrated the robustness of our approach and the good behavior of the
proposed measures.

There are many issues of future research worth exploring. First, we plan to ex-
tend our viewpoint framework to indoor scenes. Second, we wish to analyze how
our saliency approach can operate at multiple scales and can guide the object ex-
ploration. Third, we will investigate the integration of importance (for example,
obtained from saliency or lighting) to the input distribution. Fourth, we will explore
how the best viewpoint selection can be fine-tuned with other perceptual character-
istics such as stability. Finally, the mutual information of the viewpoint information
channel can also be interpreted as the viewpoint-based shape complexity and could
be used for object recognition tasks.
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